簡易檢索 / 詳目顯示

研究生: 黃敏霖
Min-Lin Huang
論文名稱: 灰階權重式密度分群演算法與LAO晶圓表面瑕疵檢測應用
A Grey Weighting Density-Based Clustering Algorithm And LAO Wafer Defect Inspection Application
指導教授: 蔡明忠
Ming-Jong Tsai
口試委員: 陳炤彰
Chao-Chang Chen
吳明川
Ming-Chuan Wu
學位類別: 碩士
Master
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 78
中文關鍵詞: 以密度為基礎分群演算法LAO晶圓灰階權重密度分群演算法表面瑕疵檢測
外文關鍵詞: DBSCAN, LAO wafer, GWDBSCAN (Grey Weighting Density-Based Clusterin, Surface detect inspection.
相關次數: 點閱:203下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文提出一種以資料點灰階權重之密度分群演算法:GWDBSCAN (Grey Weighting Density-Based Clustering Algorithm of Applications with Noise) 。本演算法以四象限資料點灰階值權重來當導引之概念,且成長方向由資料點的個數轉為資料點上之灰階值,並融入虛擬核心點來得到未分類資料點權重趨勢,快速移動且盡可能排除已分類點,達到快速資料分群。另提出演算法配合標準差倍率法分割背景並應用於LAO表面瑕疵檢測。另檢測主要項目為研磨液的殘留率。從光學顯微鏡中取得原影像計算出平均值後得出標準差。依實驗結果使用五倍標準差來決定門檻值可得到最佳顯現的殘留瑕疵。最後再使用本論文提出之GWDBSCAN對影像資料進行分群動作,由實驗結果,每張1280*1024pixels之LAO殘留瑕疵影像能有效標記範圍大小及位置,且符合所訂定的品質規範>10μm,並加入顏色與框線數字能更了解瑕疵資訊。


This thesis proposes Grey Weighting Density-Based Clustering Algorithm of Applications with Noise (GWDBSCAN). The algorithm uses data point gray value in four-quadrant for next growing concept of guidance. The growth direction is determined by the data points on the gray value, and the density-based clustering uses unclassified data points distribution direction of the trend to determine next virtual core point. The standard deviation of the image is applied to identify the background level for the LAO surface defect detection. The main inspected item is the slurry residue detection. The average standard deviation of the original image from the optical microscope is calculated. According to experimental results using five standards deviation to determine the threshold value can get best residual defects. Finally, this paper presents the GWDBSCAN clustering of image data. From the experimental results, each 1280*1024pixels of image with LAO residual defect can effectively locate position the defect and area. It also makes the grouping result more noticeable by using different color for understand any defect information. The defect conforms to the quality standard set more than 10μm.

摘要 I ABSTRACT II 致謝 III 目錄 IV 圖目錄 VI 表目錄 IX 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 3 1.3研究方法 4 1.4本文架構 5 第二章 LED基材相關技術與文獻探討 7 2.1 LED基板材料發展介紹 7 2.1.1藍寶石基板 9 2.1.2 LAO晶圓 10 2.2晶圓瑕疵檢測與文獻探討 12 2.3門檻值決定影像分割 14 2.3.1應用品管標準差於LAO瑕疵圖片背景分割 15 2.4資料分群演算法 18 第三章 灰階權重之密度分群演算法 19 3.1 DBSCAN分群演算法 19 3.2改良式密度分群演算法 21 3.3灰階權重分群演算法(GWDBSCAN) 27 3.4演算法之分群比較結果 34 第四章 LAO晶圓表面瑕疵檢測實驗結果與討論 41 4.1 LAO表面瑕疵檢測流程 41 4.2標準差應用於內部門檻值選用說明 42 4.3瑕疵影像資料分群與參數探討 54 4.4 LAO表面瑕疵檢測實驗結果 58 第五章 結論與未來研究方向 73 5.1結論 73 5.2未來研究方向 74 參考文獻 75 作者簡介 78

[1] 聯合國氣候變化綱要公約(UNFCCC),
http://unfccc.int/kyoto_protocol/status_of_ratification/items/2613.php, 2012
[2] International Energy Agency (IEA), http://www.iea.sp.gov.br/out/index.php, World Energy Outlook 2010, Paris.
[3] 英國國會科學與技術辦公室專題報導編號351, http://uk.nsc.gov.tw/ct.asp?xItem=0990427021&ctNode=785&lang=C, 2010
[4] LED產業2012年趨勢與展望報告,http://www.ledinside.com.tw/gold_member_2011,2011
[5] 蘇慧瑄,「台灣LED產業上中下游專利佈局之比較研究」,國立政治大學智慧財產研究所,2007。
[6] 陳炤彰、周炳伸、馬培盛、李俊誼、枋明輝,「可水解基板平坦化加工分析及應用」,機械月刊第三十七卷第十期,2011。
[7] MoneyDJ理財網, http://www.moneydj.com/kmdj/wiki/wikiviewer.aspx?keyid=2c2ef994-4cac-4cd5-8637-818a058f4730
[8] Chuan-Yu Chang, Chun-Hsi Li, Chin-Huang Chang and MuDer Jeng,” Learning Vector Quantization Neural Networks for LED Wafer Defect Inspection”, International Journal of Innovative Computing, Information and Control Volume 4, Number 10, October 2008.
[9] 張嘉偉,「使用自組式類神經網路在晶圓缺陷檢測系統」,國立雲林科技大學資訊工程研究所碩士班碩士論文,2005。
[10] 謝祥文,「區域分割為基礎之晶圓缺陷圖樣辨識演算法」,國立清華大學工業工程與工程管理研究所博士論文,2002。
[11] 石又尹,「以小波轉換演算法建構半導體晶圓缺陷圖樣辨識系統」,國立清華大學,工業工程與工程管理研究所碩士論文,2007。
[12] 鐘崇毓,「LED晶粒表面瑕疵之自動化視覺檢測」,朝陽科技大學工業工程與管理系碩士論文,2007。
[13] 林正偉,「賈柏轉換應用於晶圓晶片之可見瑕疵檢測」,國立臺北科技大學工業工程與管理系所碩士論文,2004。
[14] 林松濱,「裸晶粒自動化視覺檢測模組之開發」,國立台灣科技大學機械工程研究所碩士論文,2011。
[15] 王聖儒,「渦輪葉片的智慧型磁粒檢測方法」,國立中山大學機械工程研究所碩士論文,1999。
[16] 鐘國亮,「影像處理與電腦視覺」,東華書局,2006。
[17] 桂楚華、林清河,「全面品質管理與六標準差」,華泰文化,2008。
[18] 林育臣,「群聚技術之研究」,朝陽科技大學資訊管理研究所碩士論文,2002
[19] J. MacQueen, “Some Methods for Classification and Analysis of Multivariate Observations, ” In Proc. 5th Berkeley Symp. Math. Stat. and Prob., Vol. 1, pp. 281-297, 1967.
[20] Guha, Sudipto, Rajeev Rastogi, and Kyuseok Shim, “ROCK: A Robust Clustering Algorithm for Categorical Attributes,” IEEE, Conference on Data Eng., 1999.
[21] M. Ester, H.P. Kriegel, J. Sander and X. Xu, “A density-based algorithm for discovering clusters in large spatial databases with noise, ” Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, Portland, Oregon, USA, pp. 226-231, 1996.
[22] W. Wang, R. Yang and R. Muntz, “STING: A Statistical Information grid Approach to Spatial Data Mining,” In Proc. 1997 Int. Conf. Very Large Data Bases(VLDB’97), Athens, Greece, pp. 186-195, August, 1997.
[23] X. Xu, M. Ester, H.P. Kriegel and J. Sander, “A distribution– based Clustering Algorithm for Mining in Large Spatial Databases,” In Proc. 14th Int. Conf. Data Engineering (ICDE'98),Orlando, Florida, USA, 1998.
[24] M. Ester, H.P. Kriegel, J. Sander, M. Wimmer and X. Xu, “Incremental Clustering for Mining in a Data Warehousing Environment,” In Proc. 24th Int. Conf. Very Large Databases (VLDB'98), New York City, USA, pages 24 - 27, August, 1998.
[25] M. Ankerst, M. Breunig, H.P. Kriegel, and J. Sander, “OPTICS: Order-ing points to identify the clustering structure,” In Proc. 1999 ACM-SIGMOD Int. Conf. Management of Data (SIGMOD’99), pages 49-60, Philadelphia, PA, June 1999.
[26] B. Borah and D.K. Bhattacharyya, “An Improved Sampling-Based DBSCAN for Large Spatial Databases,” Intelligent Sensing and Information Processing, pp. 92-96, 2004.
[27] D. Ma and A. Zhang, “An Adaptive Density-Based Clustering Algorithm for Spatial Database with Noise,” Data Mining, ICDM '04. Fourth IEEE International Conference, Brighton, United Kingdom, pp.467–470, Nov. 01-04, 2004.
[28] P. Viswanath and R. Pinkesh, “l-DBSCAN : A Fast Hybrid Density Based Clustering Method,” Pattern Recognition, 2006. ICPR 2006. 18th International Conference on Volume 1, Hong Kong, pp. 912-915, August 20-24, 2006.
[29] Y.P. Wu, J.J. Guo and X.J. Zhang, “A Linear DBSCAN Algorithm Based on LSH,” Proceedings of the Sixth International Conference on Machine Learning and Cybernetics, Hong Kong, pp. 2608-2614, August, 2007.
[30] A. Gionis, P. Indyk, and R. Motwani, “Similarity Search in High Dimensions via Hashing,” Proc. Very Large Data Base Conf. (VLDB '99), pp. 518-529, Sept, 1999.
[31] N. Beckmann, H.P. Kriegel, R. Schneider, and B. Seeger, “The R*-Tree: An Efficient and Robust Access Method for Points and Rectangles,” Proc. ACM SIGMOD Conf. Management of Data, Atlantic City, NJ, 1990.
[32] S. Berchtold, D. Keim, and H.P. Kriegel, “The X-Tree: An Index Structure for High-Dimensional Data,” Proc. 22nd Conf. Very Large Data Bases, Taj Mahal Hotel, Mumbai (Bombay), India, pp. 28-39. 1996.
[33] Y. Chen, L. Tu, “Density-Based Clustering for Real-Time Stream Data.” KDD’07, San Jose, California, USA, pp. 133-142, August 12–15, 2007.
[34] L. Duan, L. Xu, F. Guo, J. Lee, B. Yan, “A local-density based spatial clustering algorithm with noise,” Information Systems Vol.32, pp. 978-986, 2007.
[35] B. Liu, “A Fast Density-Based Clustering Algorithm for Large Databases,” Proceedings of the Fifth International Conference on Machine Learning and Cybernetics, Dalian, pp. 996-1000, August, 2006.
[36] 吳宗諭、蔡明忠、田芬寧,「以密度為基礎之改良型快速分群演算法及其於偏光板瑕疵檢測之應用」,技術學刊Vol.24,No.4,pp. 267-274,2009,12月。
[37] 蔡明忠、田芬寧、林家戊,「以密度重心導引之分群演算法及其於抗反射玻璃瑕疵檢測之應用」,Taiwan AOI Forum, Show and Contest,台灣科技大學,台北,十一月,2009。
[38] 蔡明忠、林家戊、楊明輔,「整合密度趨勢與虛擬核心點之密度分群演算法及應用於太陽能電池背面瑕疵檢測」, Taiwan AOI Forum, Show and Contest,台灣科技大學,台北,十一月,2010。

無法下載圖示 全文公開日期 2017/07/31 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE