簡易檢索 / 詳目顯示

研究生: 吳政樺
Cheng-hua Wu
論文名稱: 木糖同步異構化醱酵生產細菌纖維素
Simultaneous isomerization and fermentation of xylose for the production of value-added bioproducts
指導教授: 李振綱
Cheng-kang Lee
口試委員: 段國仁
Kow-jen Duan
吳誌明
Jyh-ming Wu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 108
中文關鍵詞: 木質醋酸菌木酮糖木糖異構酶
外文關鍵詞: Acetobacter xylinum, xylulose, xylose isomerase
相關次數: 點閱:124下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 木質纖維素中的葡萄糖與木糖可作為微生物醱酵的基質,然而麵包酵母與木質醋酸菌均無法有效地利用木糖生產酒精與細菌纖維素;藉由木糖異構酶 (xylose isomerase) 將木糖進行異構化反應,其產物木酮糖 (xylulose) 卻可被有效地利用。以同步異構化醱酵(simultaneous isomerization and fermentation;SIF ) 方式培養,可提高木酮糖之轉換率,使醱酵產物量提升。
    本研究利用基因重組技術,成功地將厭氧菌 Clostridium phytofermentans 中的木糖異構酶 XI 基因建構於載體 pET-14b,並將此質體轉殖於 E.coli BL21(DE3) 中進行木糖異構酶的表現生產。針對 pET14b-CpXI 所產異構酶進行活性測試,其最佳反應條件為 pH 7.5、45 ℃,比活性為 1.85 U/mg,此外,與商業化之 Streptomyces 來源之固定化木糖異構酶相較,其木酮糖平衡產率約低 10 %。在以木質醋酸菌 Acetobacter xylinum BCRC 12334 與剔除葡萄糖脫氫酶 (GDH) 基因之突變菌株生產細菌纖維素時,發現木糖不易代謝,且纖維素產量亦低於木酮糖為碳源,細菌纖維素轉化率可達 11.26 %,木酮糖有利於突變菌株醱酵生產纖維素。以同步異構化醱酵培養時,木糖含量能有效地被轉換成木酮糖而代謝;細菌纖維素產量可達 0.8
    g/ L,與木糖相較,產量可提高四倍。對麵包酵母之酒精醱酵,可將 12.81 g/L 之木酮糖轉化產生出 1.01 g/L 之酒精。


    Xylose and glucose are the most abundant fermentable sugars that can be obtained from lignocellulosic biomass. However, xylose is not easily metabolized by S.cerevisiae and A. xylinum to produce bacterial cellulose and ethanol. In this present study, D-xylose was converted to its keto isomer, D-xylulose, by recombinant xylose isomerase and immobilized glucose isomerase, sweetzyme. Xylulose can be metabolized by S.cerevisiae and A. xylinum. Simultaneous isomerization and fermentation (SIF) can shift the isomerization equilibrium in favor of xylulose generation and benefits theproduction of fermentation products.
    The gene of xylose isomerase from an anaerobic bacterium Clostridium phytofermentans, was cloned and successfully expressed in E.coli BL21 (DE3) using pET14b as a vector. The xylose isomerase showed maximum activity of 1.85U/mg at pH 7.5 and 45℃. Besides, compared with immobilized glucose isomerase, equilibrium concentration of xylulose was about 10% lower. Bacterial cellulose produced in D-xylose medium was much less than the amount of xylose consumed during static cultivation of A. xylinum. The A. xylinum GDH mutant was a better cellulose producer than when in D-xylose/D-xylulose mixed medium was employed. The sugar to cellulose conversion yield of 11.26 % can be reached. D-xylose became fermentable sugar for acetic acid bacterial and yeast if xylose isomerase was added to the medium. The bacterial cellulose productivity of A. xylinum mutant strain with XI addition was about 4 times higher than that host strain. When S.cerevisiae, was employed to utilize xylose with the help of xylose isomerase, approximately 1.01 g/L ethanol could be produced from 12.81 g/L xylose.

    中文摘要..................................................I 英文摘要 ...............................................III 目錄.....................................................V 圖目錄...............................................IX 表目錄.................................................XII 第一章 緒論 1 1.1 研究目的.............................................1 1.2 研究內容簡介 ......3 第二章 文獻回顧...........................................4 2.1 木質纖維素 (lignocelluloses) 來源與組成 ......4 2.1.1 半纖維素 .....4 2.2 半纖維素之水解 .....7 2.2.1 酸水解法 .....8 2.2.1.1 濃酸水解 .....8 2.2.1.2 稀酸水解 ..........8 2.2.2 鹼液前處理法 (Alkaline treatment) ......9 2.2.3 有機溶劑前處理 (Organosolv pretreatment) .......10 2.2.4 離子溶液 .......12 2.2.5 半纖維素酵素水解 .......13 2.3 木質醋酸菌與細菌纖維素之簡介 ......15 2.3.1 細菌纖維素 .......15 2.3.2 木質醋酸菌之特性及細菌纖維素合成途徑 .......16 2.4 生質酒精 .......20 2.4.1 木糖轉化為酒精之製程 ........20 2.4.2 木糖異構酶 ............24 2.5.3 同步異構化醱酵 (SIF) ............28 第三章 實驗材料與方法 ............30 3.1 實驗流程 ............30 3.1.1 XI 基因表現載體 pET23a-CpXI 之建構 .........31 3.2 實驗材料 ............32 3.2.1 菌株 ........32 3.2.2 載體 ............32 3.2.3 引子 .........32 3.2.4 操作試液套件組 (Kit) ............33 3.2.5 標準分子量溶液 ...........33 3.2.6 酵素 .............33 3.2.7 其它 ........33 3.3 實驗藥品 ..............34 3.4 實驗儀器及設備 ...........36 3.5 CpXI基因表現載體 pET23a 之建構 ..........37 3.5.1 質體 pET23a 之純化 .......37 3.5.2 CpXI 基因片段之製備 ....38 3.5.3 質體 pET23a 之限制酶反應 ........39 3.5.4 接合反應 (ligation) ...........40 3.5.5 Colony PCR ..........40 3.6 勝任細胞之配置 ..........41 3.7 質體轉質於勝任細胞 (BL21) ..........42 3.8 菌株培養及重組蛋白之生產 ..........42 3.9 重組蛋白之純化 ............43 3.10 蛋白質之濃度分析 ............44 3.11 .XI 活性分析 ............45 3.12 蛋白質電泳分析 ...........46 3.13 高效能液相層析儀 (HPLC) ...........47 3.14 還原糖定量法 (DNS 法) ........48 3.15 內切纖維分解酵素 (endoglucanase;CMCase) 測定 .....50 第四章 結果與討論 ....................................51 4.1 CpXI 表現載體之建構 ..............................51 4.2 CpXI 木糖異構酶之表現生產 .......................53 4.2.1 pET14b-CpXI 轉型菌株表現木糖異構酶 .......54 4.3 不同 CpXI 表現質體對菌體生長之影響 ...............55 4.4 pH 與溫度對 CpXI 異構化木糖活性之影響 ...........59 4.5 CpXI 異構化木糖之反應動力 ........................62 4.6 以 Sweetzyme 進行木糖異構化 ......................64 4.7 碳源對於 G. xylinum 及其突變株生長之影響 ...........66 4.7.1 碳源對於醱酵之影響 ..........................66 4.7.2 G. xylinum 中之 CMCase 活性 .................71 4.8 搖瓶培養對細菌纖維素產量之影響 ...................72 4.9 Sweetzyme 與 CpXI 之活性比較 .....................74 4.10 以 SIF 生產細菌纖維素 ............................75 4.11 ..S. cerevisiae以 SIF 方式生產酒精 ...................77 參考文獻................................................82 附錄.....................................................91

    Alen, R., 2000. Structure and chemical composition of wood. In: Stenius, P. (Ed.), Forest Products Chemistry. Fapet Oy, Helsinki,12-57.
    Allen, S.G., Schulman, D., Lichwa, J., Antal, M.J., Jennings, E., Elander, R., 2001. A comparison of aqueous and dilute-acid single-temperature pretreatment of yellow poplar sawdust. Industrial and Engineering Chemistry Research, 40:2352-2361.
    Balat, M., 2009. Gasification of biomass to produce gaseous products. Energy Sources Part A, 31:516-526.
    Bengtsson, O., Hahn-Hagerdal, B., Gorwa-Grauslund, M.F., 2009. Xylose reductase from Pichia stipitis with altered coenzyme preference improves ethanolic xylose fermentation by recombinant Saccharomyces cerevisiae. Biotechnology for Biofuels, 2:9-18.
    Bjerre, A.B., Olesen, A.B., Fernqvist, T., Ploger, A., Schnidt, A.S., 1996. Pretreatment of wheat straw using combined wet oxidation and alkaline hydrolysis resulting in convertible cellulose and hemicelluloses. Biotechnology and Bioengineering, 49:568-577.
    Brat, D., Boles, E., Wiedemann, B., 2009. Functional expression of a bacterial xylose isomerase in Saccharomyces cerevisie. Applied and Environmental Microbiology, 75:2304-2311.
    Brown, Jr R.M., 1992. Emerging technologies and future prospects for industrialization of microbially derived cellulose. In: Ladisch MR, Bose A, editors. Hamessing biotechnology for the 21st century. Washington DC: American Chemical Society, 76-79.
    Carvalheiro, F., Duarte, L.C., Medeiros, R., Girio, F.M., 2004. Optimization of brewery’s spent grain dilute-acid hydrolysis for the production of pentose-rich culture media. Applied Biochemistry and Biotechnology, 113:1059-1072.
    Carvalho, L.G., Gomes, A.M., Aranda, D.A.G., Pereira, N., 2009. Ethanol from lignocellulosic residues of palm oil industry. In: 11th International conference on advanced materials, Rio de Janeiro, Brazil, September, 20-25.
    Chandel A.K., Singh O.V., Rao L.V., 2010. Biotechnological applications of hemicellulosic derived sugars : State-of-the-art. In: O.V. Slingh and S.P. Harvey (eds.) Netherland: Springer Verlag, 63-81.
    Chandel, A.K., Chandrasekhar, G., Radhika, K., Ravinder, R., Ravindra, P., 2011. Bioconversion of pentose sugars into ethanol: A review and future directions. Biotechnology and Molecular Biology Review, 6:8-20.
    Chen, W.P., 1980. Glucose isomerase (a review). Process Biochemistry, 15:30-35.
    Chen, P., Cho, S.Y., Jin, H.J., 2010. Modification and application of bacterial cellulose in polymer science. Macrolecular Research, 18:309-320.
    Chum, H.L., Douglas, L.J., Feinberg, D.A., Schroeder, H.A., 1985. Evaluation of pretreatments for enzymatic hydrolysis of cellulose. Available from http://www.nrel.gov/does/legosti/old/2183.pdf
    Chundawat, S.P., Vismeh, R., Sharma, L.N., Humpula, J.F., da Costa Sousa, L., Chambliss, C.K., Jones, A.D., Balan, V., Dale, B.E., 2010. Multifaceted characterization of cell wall decomposition products formed during ammonia fiber expansion (AFEX) and dilute acid based pretreatments. Bioresource Technology, 101: 8429–8438.
    Demirbas, A., 2005. Bioethanol from cellulosic materials: a renewable motor fuel from biomass. Energy Source, 27:327-337.
    Dhawan, S., Kaur, J., 2007. Microbial mannanase: an overview of production and applications. Critical Reviews in Biotechnology, 27:197-216.
    Domanska, U., Bogel-Lukasik, R., 2005. Physicochemical properties and solubility of alkyl-(2-hydroxyethyl)-dimethylammonium bromide. The Journal of Physical Chemistry B, 109:12124-12132.
    Dos, R.S., Costa, M.A.F., Peralta, R.M., 2003. Xylanase production by a wild strain of Aspergillus nidulans. Acta Scientiarum-Biological Sciences, 1:221-225.
    Duff, S.J.B., Murray, W.D., 1996. Bioconversion of forest products industry waste cellulosic to fuel ethanol: A review. Bioresource Technology, 55:1-33.
    Dukler, A., Freeman, A., 2001. In situ product removal of ketoses by immobilized 3-amino phenyl boronic acid: effect of immobilization method on pH profile. Biotechnology and Bioengineering, 75:25-28.
    Dunlop, A.P., 1948. Furfural formation and behavior. Industrial and Engineering Chemistry Research, 4:843-853.
    Earle, M.J., Esperanca, J.M.S.S., Gilea, M.A., Lopes, J.N.C., Rebelo, L.P.N., Magee, J.W., Seddon, K.R., Widegren, J.A., 2006. The distillation and volatility of ionic liquids. Nature, 439:831-834.
    Ebringerova, A., Hromadkova, Z., Heinze, T., 2005. Hemicellulose. Advances in Polymer Science, 186:1-67.
    Eliasson, A., Christensson, C., Wahlbom, C.F., Hahn-Hagerdal, B., 2000. Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae cerrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures. Applied and Environmental Microbiology, 66:3381-3386.
    Embuscado, M.E., Marks, J.S., BeMiller, J.N., 1994. Bacterial cellulose. I. Factors affecting the production of cellulose by Acetobacter xylinum. Food Hydrocolloids, 8:407-418.
    Fengel, D., Wegener, G., 1983. Wood: Chemistry, Ultrastructure, Reactions. Walter de Gruyter and Co. Berlin.
    Filho, E.X.F., Tuohy, M.G., Puls, J., Coughlan, M.P., 1991. The xylan-degrading enzyme-systems of Penicillium capsulatum and Talaromyces emersonii. Biochemical Society Transactions, 19:S25.
    Gardonyi, M., Hahn-Hagerdal, B., 2003. The Streptomyces rubiginosus xylose isomerase is misfolded when expressed in Saccharomyces cerevisiae. Enzyme and Microbial Technology, 32:252-259.
    Ghose, T.K., 1987. Mesurement of cellulose activities. Pure and Applied Chemistry, 59:257-268.
    Girio, F.M., Fonseca, C., Carvalherio, F., Duarte, L.C., Marques, S., Bogel-Łukasik, R., 2010. Hemicelluloses for fuel ethanol: A review. Bioresource Technology, 101:4775-4800.
    Gray, K.A, Zhao, L., Emptage, M., 2006. Bioethanol. Current Opinion in Chemical Biology, 10:141-146.
    Gullu, D.E., 2003. Effect of catalyst on yield of liquid products from biomass via pyrolysis. Energy Source, 25:753-765.
    Haltrich, D., Nidetzky, B., Kulbe, K.D., Steiner, W., Zupancic, S., 1996. Production of fungal xylanases. Bioresource Technology, 58:137-161.
    Hochester, R.M., Watson, R.E., 1954. Enzymatic isomerization of D-xylose to D-xylulose. Archives of Biochemistry and Biophysics, 48:120-129.
    Hou, J., Shen, Y., Li, X.P., Bao, X.M., 2007. Effect of the reversal of coenzyme specificity by expression of mutated Pichia stipitis xylitol dehydrogenase in recombinant Saccharomyces cerevisiae. Letters in Applied Microbiology, 45:184-189.
    Hsaio, H.Y., Chiang, L.C., Chen, L.F., Tsao, G.T., 1982. Effects of borate on isomerization and yeast fermentation of high xylulose solution and acid hydrolysate of hemicellulose. Enzyme and Microbial Technology, 4:25-31.
    Huber, G.W., Iborra, S., Corma, A., 2006. Synthesis of transportation fuels from biomass: chemistry catalysts, and engineering. Chemical Reviews, 106:4044-4098.
    Iguchi, M., Yamanaka, S., Budhiono, A., 2000. Bacterial cellulose-a masterpiece of nature’s arts: Review. Journal of Materials Science, 35:261-270.
    Inyang, C.U., Gebhart, U., Obi, S.K.C., Bisswanger, H., 1995. Isolation and characterization of a D-glucose/xylose isomerase from a new thermophilic strain Streptomyces sp. (PLC). Applied Microbiology and Biotechnology, 43:632-638.
    Ishihara, M., Matsunaga, M., Hayashi, N., Tišler, V., 2002. Utilization of D-xylose as carbon source for production of bacterial cellulose. Enzyme and Microbial Technology, 31:986-991.
    Jeffries, T.W., Jin, Y.S., 2004. Metabolic engineering for improved fermentation of pentoses by yeasts. Applied and Environmental Microbiology, 63:495-509.
    Jin, M., Balan, V., Gunawan, C., Dale, B.E., 2011. Consolidated bioprocessing (CBP) performance of Clostridium phytofermentans on AFEX-treated corn stover for ethanol production. Biotechnology and Bioengineering, 108:1290-1297.
    Jorgensen, H., Eriksson, T., Borjesson, J., Tjerneld, F., Olsson, L., 2003. Purification and characterization of five cellulases and one xylanase from Penicillium brasilianum IBT 20888. Enzyme and Microbial Technology, 32:851-861.
    Jonas, R., Farah, L.F., 1997. Production and application of microbial cellulose. Polymer Degradation and Stability. 59:101-106.
    Keshwani, D.R., Cheng, J.J., 2009. Switchgrass for bioethanol and other value-added application : a review. Bioresource and Technology, 100:1515-1523.
    Kim, J.S., Lee, Y.Y., Park, S.C., 2000. Pretreatment of wastepaper and pulp mill sludge by aqueous ammonia and hydrogen peroxide. Applied of Biochemistry and Biotechnology, 84-86:129-139.
    Kim, T.H., Kim, J.S., Sunwoo, C., Lee, Y.Y., 2003. Pretreatment of corn stover by aqueous ammonia. Bioresource Technology, 90:39-47.
    Kim, T.H., Lee, Y.Y., 2005. Pretreatment and fractionation of corn stover by ammonia recycle percolation process. Bioresource Technology, 96:2007-2013.
    Kim, J.S., Kim, H., Lee, J.S., Lee, J.P., Park, S.C., 2008. Pretreament characteristics of waste oak wood by ammonia percolation. Applied of Applied Biochemistry and Biotechnology, 148:15-22.
    Klemm, D., Schumann, D., Udhardt, U., Marsch, S., 2001. Bacterial synthesized cellulose – artificial blood vessels for microsurgery. Progress in Polymer Science, 26:1561-1603.
    Klinke, H.B., Ahring, B.K., Schmidt, A.S., Thomsen, A.B., 2002. Characterization of degradation products from alkaline wet oxidation of wheat straw. Bioresource Technology, 82:15-26.
    Kuyper, M., Harhangi, H.R., Stave, A.K., Winkler, A.A., Jetten, M.S.K., de Laat, W.T.A.M., den Ridder, J.J.J., den Camp, H.J.M., van Dijken, J.P., Pronk, J.T., 2003. High-level functional expression of a fungal xylose isomerase: the key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae? FEMS Yeast Research, 4:69-78.
    Kuyper, M., Toirkens, M.J., Diderich, J.A., Winkler, A.A., van Dijken, J.P., Pronk, J.T., 2005. Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain. FEMS Yeast Research, 5:925-934.
    Lee, W.-J., Kim, M.-D., Ryu, Y.-W., Bisson, L.F., Seo, J.-H., 2002. Kinetic studies on glucose and xylose transport in Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 60:186-191.
    Lonn, A., Gardonyi, M., van Zyl, W., Hahn-Hagerdal, B., Otero, R.C., 2002. Cold adaptation of xylose isomerase from Thermus thermophilus through random PCR mutagenesis. Gene cloning and protein characterization. European Journal of Biochemistry, 269:157-163.
    Madhavan, A., Tamalampudi, S., Ushida, K., Kanai, D., Katahira, S., Srivastava, A., Fukuda, H., Bisaria, V.S., Kondo, A., 2009. Xylose isomerase from polycentric fungus Orpinomyces: gene sequencing, cloning, and expression in Saccharomyces cerevisiae for bioconversion of xylose to ethanol. Applied Microbiology and Biotechnology, 82:1067-1078.
    Margeot, A., Hahn-Hagerdal, B., Edlund, M., Slade, R., Monot, F., 2009. New improvements for lignocellulosic ethanol. Current Opinion in Biotechnology, 20:372-380.
    Marzialetti, T., Olarte, M.B.V., Sievers, C., Hoskins, T.J.C., Agrawal, P.K., Jones, C.W., 2008. Dilute acid hydrolysis of Loblolly pine: a comprehensive approach. Industrial & Engineering Chemistry Research, 47:7131-7140.
    Miller, G.L., 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31:426.
    Mitsuhashi, S., Lampen, J.O., 1953. Conversion of D-xylulose to D-xylose in extracts of Lactobacillus pentosus. Journal of Biological Chemistry, 204:1011-1018.
    Molina-Sabio, M., Rodriguez-Reinoso, F., 2004. Role of chemical activation in the development of carbon porosity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 241:15-25.
    Monavari, S., Galbe, M., Zacchi, G., 2009. The influence of solid/liquid separation techniques on the sugar yield in the two-step dilute acid hydrolysis of softwood followed by enzymatic hydrolysis. Biotechnology for Biofuels, 2:6.
    Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y.Y., Holtzapple, M., Ladisch, M., 2005. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology 96: 673–686.
    Nakagaito, A.N., Iwamoto, S., Yano, H., 2005. Bacterial cellulose: the ultimate nano-scalar cellulose morphology for the production of high-strength composites. Applied Physics A Materials Science and Processing, 80:93-97.
    Pan, X.J., Arato, C., Gilkes, N., Gregg, D., et al, 2005. Biorefinine of softwoods using ethanol organosolv pulping: preliminary evaluation of process streams for manufacture of fuel-grade ethanol and co-products. Biotechnology and Bioengineering, 90:473-481.
    Pastinen, O., Visuri, K., Schoemaker, H.E., Leisola, M., 1999. Novel reactions of xylose isomerase from Sterptomyces rubiginosus. Enzyme and Microbial Technology, 25:695-700.
    Paszner, L., Chang, P.C., 1983. Organosolv delignification and saccharification process for lignocellulosic plant materials. US patent, 4.409.032
    Paszner, L., Quinde, A.A., Meshgini, M., 1985. ACOS-accelerated hydrolysis of wood by acid catalysed organosolv means. International Symposium on Wood and Pulping Chemistry, Vancouver, Canada, 235-240
    Pereira, H., Graca, J., Rodrigues, J.C., 2003. Wood chemistry in relation to quality. In: Barnett, J.R., Jeronimidis, G. (Eds.), Wood Quality and Its Biological Basis. Blackwell Publishing, Oxford, 53-86.
    Petschacher, B., Nidetzky, B., 2008. Altering the coenzyme preference of xylose reductase to fa1vor utilization of NADH enhances ethanol yield from xylose in a metabolically engineered strain of Saccharomyces cerevisiae. Microbial Cell Factories,7:9-20.
    Pronk, J.T., Bakker, A.W., van Dam, H.E., Straathof, J.J., Scheffers, W.A., van Dijken, J.P., 1988. Preparation of D-xylulose from D-xylose. Enzyme and Microbial Technology, 10:537-542.
    Rao, K., Chelikani, S., Relue, P., Varanasi, S., 2008. A novel technique that enables efficient conduct of simulataneous isomerization and fermentation (SIF) of xylose. Applied Biochemistry and Biotechnology, 146:101-117.
    Ross, P., Weinhouse, H., Aloni, Y., Michael, D., Weinberger-Ohana, P., Mayer, R., Braun, S., de Vroon, E., van der Marel, G.A., van Boon, J.H., Benziman, M., 1987. Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid. Nature, 325:279.
    Ross, P., Mayer, R., Benziman, M., 1991. Cellulose biosynthesis and function in bacteria. Microbiological Reviews, 55:35-58.
    Saha, B.C., 2003. Hemicellulose bioconversion. Journal of Industrial Microbiology and Biotechnology, 30:279-291.
    Shallom, D., Shoham, Y., 2003. Microbial hemicellulases. Current Opinion in Microbiology, 6:219-228.
    Sievers, C., Valenzuela-Oksrte, M.B., Marzialetti, T., Musin, I., Agrawal, P.K., Jones, C.W., 2009. Ionic-liquid-phase hydrolysis of pine wood. Industrial and Engineering Chemistry Research, 48:1277-1286.
    Skoog, K., Hahn-Hagerdal B., 1988. Xylose isomerase. Enzyme and Microbial Technology, 10:66-80.
    Sun, N., Rahman, M., Qin, Y., Maxim, M.L., Rodriguez, H., Rogers, R.D., 2009. Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate. Green Chemistry, 11:646-655.
    Swatloski, R.P., Spear, S.K., Holbrey, J.D., Rogers, R.D., 2002. Dissolution of cellulose with ionic liquids. Journal of the American Chemical Society, 124:4974-4975.
    Traff, K.L., Cordero, R.R.O., van ZYL, W.H., Hahn-Hagerdal, B., 2001. Deletion of the GRE3 aldose reductase gene and its influence on xylose metabolism in recombinant strains of Saccharomyces cerevisiae expressing the xylA and XKS1 genes. Applied and Environmental Microbiology, 67:5668-5674.
    Ute, R., 2002. Molecular biology of cellulose production in bacteria. Reaearch in Microbiology, 153:205-212.
    Virupakshi, S., Babu, K.G., Gaikwad, S.R., Naik, G.R., 2005. Production of a xylanolytic enzyme by a thermoalkaliphilic Bacillus sp. JB-99 in solid state fermentation. Process Biochemistry, 40:431-435.
    Wang, L., Hanna, M.A., Weller, C.L., Jones, D.D., 2009. Technical and economical analyses of combined heat and power generation from distillers grains and corn stover in ethanol plants. Energy Conversion and Management, 50:1704-1713.
    Warnick, T.A., Methe, B.A., Leschine, S.B., 2002. Clostridium phytofermentans sp. nov., a cellulolytic mesophile from forest soil. International Journal of Systematic and Evolutionary Microbiology, 52:1155-1160.
    Walfridsson, M., Bao, X., Anderlund, M., Lilius, G., Bulow, L., Hahn-Hagerdal, B., 1996. Ethanolic fermentation of xylose with Saccharomyces cerevisiae harboring the Thermus thermophilus xylA gene, which expresses an active xylose (glucose) isomerase. Applied and Environmental Microbiology, 62:4648-4651.
    Watanabe, K., Tabuchi, M., Morinaga, Y., Yoshinaga, F., 1998. Structural features and properties of bacterial cellulose production in agitated culture. Cellulose, 5:187-200.
    Watanabe, S., Pack, S.P., Saleh, A.A., Annaluru, N., Kodaki, T., Makino, K., 2007a. The positive effect of the decreased NADPH-preferring activity of xylose reductase from Pichia stipitis on ethanol production using xylose-fermenting recombinant Saccharomyces cerevisiae. Bioscience Biotechnology and Biochemistry, 71:1365-1369.
    Watanabe, S., Saleh, A.A., Pack, S.P., Annaluru, N., Kodaki, T., Makino, K., 2007b. Ethanol production from xylose by recombinant Saccharomyces cerevisiae expressing protein engineered NADP+-dependent xylitol dehydrogenase. Journal of Biotechnology, 130:316-319.
    Watanabe, S., Saleh, A.A., Pack, S.P., Annaluru, N., Kodaki, T., Makino, K., 2007c. Ethanol production from xylose by recombinant Saccharomyces cerevisiae expressing protein-engineered NADH-preferring xylose reductase from Pichia stipitis. Microbiology, 153:3044-3054.
    Wong, K.K.Y., Saddler, J.N., 1992. Trichoderma xylanases, their properties and applications. In: Visser J. Beldman G, Kusters-van Someren M,Voragen AGJ, editors. Xylans and xylanases.Amsterdam: Elsevier:171-186.
    de Wulf, P., Joris, K., Vandamme, E.J., 1996. Improved cellulose formation by an Acetobacter xylinum mutant limited in (keto) gluconate synthesis. Journal of Chemical Technology and Biotechnology, 67:376-380.
    Wyman, C.E., 2003. Potential synergies and challenges in refining cellulosic biomass to fuels , chemicals, and power. Biotechnology Progress, 19:254-262.
    Yao, R., Qi, B., Deng, S., Liu, N., Peng, S., Cui, Q., 2007. Use of surfactants in enzymatic hydrolysis of rice straw and lactic acid production from rice straw by simultaneous saccharification and fermentation. Bioresource, 2:389-398.
    Yomano, L.P., York, S.W., Ingram, L.O., 1998. Isolation and characterization of ethanol-tolerant mutants of Escherichia coli KO11 for fuel ethanol production. Journal of Industrial Microbiology & Biotechnology, 20:132-138.
    Yoon, H.H., Wu, Z.W., Lee, Y.Y., 1995. Ammonia recycled percolation process for pretreatment of biomass feedstock. Applied of Biochemistry and Biotechnology, 51-52:5-19.
    Yu, Y., Lou, X., Wu, H., 2008. Some recent advances in hydrolysis of biomass in hot –compressed water and its comparisons with other hydrolysis methods. Energy Fules, 22:46-60.
    Zhao, X., Cheng, K., Liu, D., 2009. Organsolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Applied Microbiology and Biotechnology, 82:815-827.

    無法下載圖示 全文公開日期 2016/07/27 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE