簡易檢索 / 詳目顯示

研究生: 邱冠廸
Guan-Di Chiou
論文名稱: 金銀雙金屬奈米粒子光性質及相變行為探討
Study on Optical properties and Phase Transformation of Au-Ag Nanoparitcles
指導教授: 陳詩芸
Shih-Yun Chen
口試委員: 宋振銘
Jenn-Ming Song
郭東昊
Kuo, Dong-Hau
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 74
中文關鍵詞: 奈米粒子沉積物相變行為同步X光繞射儀環狀合金型奈米粒子光性質
外文關鍵詞: nanoparticle deposits, phase transformation, SR-XRD, ring-like alloy NPs, optical properties
相關次數: 點閱:321下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文研究主題可分為兩部分,第一部份探討利用聚乙烯吡咯烷酮(PVP)作為保護劑所合成出之銀和金奈米粒子因加熱所造成的結構變化以及奈米粒子與一般常使用的銅、鎳電子金屬基板之間的反應。利用新竹國家同步輻射中心BL-17B1光束線升溫X光繞射儀分析,透過監測X光繞射圖譜中繞射峰變化進行討論。第二部分是利用相同保護劑合成雙金屬奈米粒子,以穿透式電子顯微鏡(TEM)及紫外光可見光吸收光譜儀(UV-vis)分析,探討結構及成份對其特性吸收峰之影響。
第一部份實驗結果顯示,隨著溫度上升,銀(9.6nm)、金(4.2nm)奈米粒子之繞射峰會由寬弱轉為尖銳,主要是由於粒子的粗大化與接合所造成。並且觀察到在金奈米粒子沉積於銅基板上之相轉變主要是由於金與銅具有負的混合焓所導致。奈米粒子沉積物與基板間交互作用會使繞射峰相低角度偏移,主要與熱膨脹及氧化物形成之溫度有關。相較於金奈米粒子,銀奈米粒子沉積物不會與銅及其氧化物形成介金屬化合物,主要是由於銀-銅系統中向分離的特徵所導致。
第二部份實驗結果顯示,以逐步還原法先還原銀再還原金所得之奈米粒子並非核殼結構,而是中空結構奈米粒子,主要的原因是銀原子與金離子之間產生了氧化還原取代反應,且根據推測之成長機制,反應初期先形成中空金殼,而後隨時間增加,原先因氧化還原反應形成之銀離子與剩餘金離子再度被還原劑還原沉積於粒子上,且因高溫擴散作用,最後所得為中空結構之合金型奈米粒子,此外為了達熱力學上的穩定狀態,中空結構之粒子隨反應時間增長趨向於實心結構。合金型奈米粒子其特性吸收峰隨著成份比例不同而有所偏移;中空結構之奈米粒子其特性吸收峰不僅隨著成份比例不同而偏移,亦受中空程度不同而有所偏移。


This thesis includes two parts: (1) Phase transformation of the PVP protected metallic nanoparticles upon heating in air via in situ synchrotron radiation X-ray diffraction. (2) The optical properties of nanoparticles(NPs) with different structures and compositions
For the first part, through monitoring the evolution of the X-ray diffraction peaks, the phase transformation of PVP-protected Ag and Au nanoparticle deposits (NPDs) on electronic substrates of Cu and Ni upon heating in air was investigated via in situ synchrotron radiation X-ray diffraction. With an increasing temperature, the broad diffraction peak of nano-sized Ag and Au particles with the original average diameters of 4.2 nm and 9.6 nm respectively became sharp because of particle coarsening and coalescence. Complex phase transitions among Au, Cu, AuCu3 and CuOx were observed, mainly due to the negative enthalpy of mixing between Au and Cu. The interactions between NPDs and the substrates affected the shift of diffraction peaks to lower angles caused by thermal expansion and also the temperature for the oxide formation. Compared to Au, Ag NPDs did not form intermetallic compounds with Cu and the formation of copper oxides can also be retarded mainly due to the phase separation feature of the Ag-Cu system.
For the second part, the structures and compositions of Ag-Au bimetallic nanoparticles are investigated by transmission electron microscopy (TEM) and EDS. The experimental results show that ring-like alloy NPs were formed by using successive reduction method. The optical properties of the NPs were measured by UV-vis spectroscopy. It was found that the absorption spectra strongly related to the compositions, structures, and like of the bimetallic NPs. Combined with the optical properties, the formation mechanism of ring-like alloy NPs were proposed in this study.

中文摘要 Ⅰ 英文摘要 Ⅲ 誌 謝 IV 目 錄 V 圖表索引 IX 第一章 緒論 1 1.1前言 1 1.2研究動機 2 1.3研究目的 3 第二章 文獻回顧 4 2.1奈米材料 4 2.1.1表面效應 4 2.1.2量子尺寸效應 5 2.2奈米材料之光學性質 6 2.3雙金屬奈米粒子 14 2.4金屬奈米粒子之應用 14 2.4.1金屬奈米粒子之光學性質應用生物感測器 15 2.4.2金屬奈米粒子之相變特性應用微電子導線與構裝 15 2.5奈米粒子之製備方法 17 2.5.1金屬奈米粒子製備方法 17 2.5.2以水溶液還原法製備金屬奈米粒子 18 2.5.3雙金屬奈米粒子製備方法 19 2.5.3.1共還原法 19 2.5.3.2逐步還原法 20 第三章 實驗部分 22 3.1實驗材料 22 3.2實驗步驟 23 3.2.1 四氯氫金之製備 23 3.2.2純金屬奈米顆粒之製備 24 3.2.3複合金屬奈米顆粒之製備(逐步還原法) 27 3.2.4複合金屬奈米顆粒之製備(共還原法) 30 3.3分析儀器 32 3.3.1紫外光/可見光吸收光譜儀 32 3.3.2穿透式電子顯微鏡 33 3.3.3臨場同步輻射X光繞射儀 33 第四章 結果與討論 35 4.1純金、銀奈米顆粒沈積物相變行為探討 35 4.1.1純金銀奈米顆粒形貌及其光學特性 35 4.2.1純金、銀奈米顆粒沈積於不同基板隨升溫之相變化 35 4.2以共還原法合成之複合金屬奈米顆粒 49 4.2.1以穿透式電子顯微鏡觀察其形貌 49 4.2.2以紫外光可見光光譜儀探討其光學性質隨成份比例之變化 49 4.3核殼結構之雙金屬奈米顆粒 51 4.3.1銀核金殼(Ag@Au)奈米顆粒 51 4.3.1.1微結構分析 51 4.3.1.2光學性質分析 55 4.3.2金核銀殼(Au@Ag)奈米顆粒 69 4.3.2.1微結構觀察 69 4.3.2.2光學性質分析 70 第五章 結論 73 參考資料 75

[1] Y. Li, K-s Moon and C. P. Wong, Science, Vol.308, pp.1419(2005.)
[2] H. Dong, K.S. Moon and C.P. Wong, Journal of Electronic Materials, Vol.34, pp.40 (2005).
[3] 李傳宏, 黃佩珍, 盧成基,彭國光與徐文泰,材料奈米技術專刊, pp.60 (2001).
[4] P. Buffat and J. p. Borel, Physical Review.A,Vol.13,pp.2287(1976)
[5] A. P. Alivisatos, Science, Vol.271, pp.933(1996)
[6] 吳民耀,劉威志,「表面電漿子理論與模擬」,物理雙月刊,第二十八卷二期,pp.486-496(2006)
[7] G. Mie, Annals of Physics, Vol.25, pp.377(1908).
[8] U. Kreibig and C. V. Z. Fragstein, Physical, Vol.224, pp.307(1969).
[9] K. Selby, M. Vollmer, J. Masui, V. Kersin, W. de Heer and W. Knight, Physical Review B,Vol.40,pp.5417(1989).
[10] J. A. Creighton and D. G. Eadon, Journal of Chemical Society, Faraday Transactions, Vol.87, pp.3881(1991).
[11] M. Smithard and M. Q. Tran, Helvetica Physica Acta, Vol.46, pp.869(1974).
[12] N. W. Ashcroft and N. D. Mermin edit, “Solid State Physics”,p5(1976).
[13] R. L. David, “CRC Handbook of Chemistry and Physics”, 74th edition,pp.12-109,(1993-1994).
[14] R. Gans, Annals of Physics, Vol.37, pp.881(1912).
[15] Lisiecki, F. Billoudet and M. P. Pileni, Journal of Physical Chemistry, Vol.100, pp.4160(1996).
[16] 張仕欣與王崇人, 化學 Vol.56, pp.209 (1998).
[17] N. Toshima, Y. Wang, Langmuir, Vol.10, pp.4574(1994).
[18] S. Link, Z. L, Wang and M. A. El-Sayed, Journal of Physical Chemistry B Vol.103, pp.3529(1999).
[19] N. Toshima, M. Harada, T. Yonezawa, K. Kushihashi and K. Asakura, Journal of Physical Chemistry, Vol. 95, pp.7448 (1991).
[20] M. Treguer, C. Cointet, H. Remita, J. Khatouri, M. Mostafari, J. Amblard, J. Belloni, R. Keyzer, Journal of Physical Chemistry, Vol.102, pp.4310(1998).
[21] J. Turkevich, G. Kim, Science, Vol.169, pp.873(1970).
[22] G. Schmid, H. West, J. O. Malm, J. O. Bovin, C. Grenthe, Chemistry European Journal., Vol.2, pp.1099(1996).
[23] J. Belloni, M. Mostafavi, S. Remita, J. L. Marignier, M. O. Delcourt, New Journal of Chemistry, Vol.22, pp.1239(1998).
[24] M. Harada, K. Asakura, Y. Ueki, N. Toshima, Journal of Physical Chemistry, Vol.97, pp.5103(1993).
[25] Y. Wang, N. Toshima, Journal of Physical Chemistry B, Vol.101, pp.5301(1997).
[26] J. H. Hodak, A. Henglein, M. Giersig and G. V. Hartland, Journal of Physical Chemistry B, Vol.104, pp.11708 (2000).
[27] 莊萬發,超微粒子理論應用,復漢(1995)。
[28] 史宗准,微分製程技術簡介,化工,Vol.42,pp.28(1995)
[29] M. T. Reetz, W. Helbig, S. A.Quaiser, Chemistry of Materials, Vol.7,pp.2227-2228(1995)
[30] J.U.Park, M. Hardy, S. J. Kang, K. Barton, K. Adair, D.K. Mukhopadhyay, C.Y. Lee, M.S. Strano, A.G.Alleyne, J.G. Georgegiadis, P.M. Ferreira and J.A. Rogers, Nature Materials, Vol.6, pp.782(2007).
[31] B. Derby and N. Reis, MRS Bulletin, Vol.28, pp.815(2003).
[32] K-s Moon, H.Dong, R. Maric, S.Pothukuchi A. Hunt, Y. Li and C.P. Wong, Journal of Electronic Materials,Vol.34, pp.168(2005)
[33] N. Toshima, T. Yonezawa, , Bimetallic Nanoparticles – Novel Materials for Chemical and Physical Applications, New Journal of Chemistry, pp.1179(1998).
[34] M. T. Reetz, W. Helbig, S. A. Quaiser, Chemistry of Materials., Vol.7, pp.2227(1995).
[35] J. Belloni, M. Mostafavi, S. Remita, J. L. Marignier, M. O. Delcourt, New Journal of Chemistry, Vol.22, pp.1257(1998).
[36] T. Yonezawa, T. Sato, S. Kurada, K. Kuge, Journal of Chemical Society, Faraday Transactions, Vol.87, pp.1905(1991).
[37] Y. Mizukoshi, K. Okitsu, Y. Maeda, T. A. Yamamoto, R. Oshima, Y. Nagata, Journal of Physical Chemistry B, Vol.101, pp.7033(1997).
[38] Qingbo Zhang, JimYang Lee, Jun Yang, Chris Boothroyd ,Jixuan Zhang, Nanotechnology ,Vol.18 , pp.245605(2007)
[39] Y . Wang, N. Toshima, Journal of Physical Chemistry B, Vol.101, pp.5301-5306 (1997)
[40] Silvert, P.-Y.; Tekaia-Elhsissen, K., Solid State Ionics, Vol.82, pp.53(1995).
[41] Sangregorio, C.; Galeotti, M.; Bardi, U.; Baglioni, P., Langmuir, Vol.12, pp.5800(1996).
[42] H. S. Nalwa, Handbook of Nanostructured Materials and nanotechnology, Vol. 1, Academic Press: San Diego, 2000; Chap. 1.
[43] S. W. Han, Y. Kim and K. Kim, Journal of Colloid and Interface Science, Vol.208, pp.272-278 (1998).
[44] Goia, D. V. and Matijevic, E., New Journal of Chemistry, Vol.22, pp.1203 (1998).
[45] H.M. Chen, R.S. Liu, L.-Y. Jang, J.-F. Lee and S.F. Hu, Chemical Physics Letters, Vol.421, pp.118(2006).
[46] R.C. Johnson, J. Li, J.T. Hupp and G.C. Schatz, Chemical Physics Letters, Vol.356, pp.534(2002).
[47] D.A. Ferrer, L.A. Diaz-Torres, S. Wu, M. Jose-Yacaman, Catalysis Today, Vol.147, pp.211(2009).
[48] B.D. Cullity, Elements of X-ray Diffraction, 2nd ed. Reading, Massachusetts, pp. 284(1978).
[49] T.H. Kao, J.M. Song, I.G. Chen, T.Y. Dong, W. S. Hwang and H.Y. Lee, Applied Physics Letters, Vol.95, pp.131905(2009).
[50] L. Rast and A. Stanishevsky, Applied Physics Letters, Vol.87, pp.223118 (2005).
[51] W. Gao, H. Gong, J. He, A. Thomas, L. Chan and S. Li, Materials Letters, Vol.51, pp.78(2001).
[52] W.B. Pearson, Handbook of Lattice Spacings and Structures of Metals and Alloys, Pergamon press, New York (1967).
[53] V. Ozolins, C. Wolverton and A. Zunger, Physical Chemistry B, Vol.57, pp.4332 (1998).
[54] R. Hultgren, P.D. Desai, D.T. Hawkins, G. Gleiser, K. Kelley, Selected Values of the Thermodynamic Properties of Binary Alloy, Metals Park, Ohio (1973).
[55] L. Pauling, The Nature of the Chemical Bond, 3rd ed., Cornell University Press, New York (1960).
[56] T.B. Massalski, H. Okamoto, P.R. Subramanian and L. Kacprzak, Binary Alloy Phase Diagrams, 2nd ed., ASM International, Materials Park, OH, pp. 358(1990).
[57] W.D. Callister, Jr., Fundamentals of Materials Science and Engineering, 2nd ed., John Wiley & Sons, NJ, pp. A17 (2004).
[58] W.D. Callister, Jr., Fundamentals of Materials Science and Engineering, 2nd ed., John Wiley & Sons, NJ, Book cover (2004).
[59] T.H. Kao, J.M. Song, I.G. Chen, T.Y. Dong and W. S. Hwang, Acta Mater. (2010), doi:10.1016/j.actamat.2010.10.051.
[60] S. Link, Z. L, Wang and M. A. El-Sayed, Journal of Physical Chemistry B, Vol.103, pp.3529(1999).
[61] Y. Sun ,B.T. Mayers , Y. Xia, Nano Lett, Vol.2, pp.481 (2002).
[62] Y. Sun and Y. Xia, Science, Vol.298, pp.2176 (2002).
[63] Gyorgyi Glodan, Csaba Cserhati, Imre Beszeda, and Dezső L. Beke, Applied Physics Letters, Vol.97, pp.113109 (2010)
[64] J. H. Hodak, A. Henglein, M. Giersig and G. V. Hartland, Journal of Physical Chemistry B, Vol.104, pp.11708 (2000).
[65] Yugang Sun and Younan Xia, Analyst, Vol128, pp.686–691(2003)
[66] 王鉦元,“中空金奈米粒子及奈米壓印金屬在表面電漿元件上之應用”國立灣大學碩士論文,(2006)
[67] W. H. Qi and S. T. Lee, Journal of Physical Chemistry C, Vol.114, pp.9580–9587(2010)

QR CODE