簡易檢索 / 詳目顯示

研究生: 陳品洋
Pin-Yang Chen
論文名稱: 建構萊茵衣藻表面展示及分泌系統以水解聚對苯二甲酸乙二酯
Develop cell surface display and secretion system in Chlamydomonas reinhardtii to hydrolyze polyethylene terephthalate
指導教授: 蔡伸隆
Shen-Long Tsai
口試委員: 蔡伸隆
Shen-Long Tsai
李振綱
Cheng-Kang Lee
王勝仕
Sheng-Shih Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 87
中文關鍵詞: 萊茵衣藻PET水解酶表面展示分泌
外文關鍵詞: C.reinhardtii, PETase, Surface display, Secretion
相關次數: 點閱:206下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 聚對苯二甲酸乙二酯(PET)在過去半個世紀以來的需求急遽上升,達到每年3000 萬噸,也因此產生了大量PET廢棄物,以傳統方法處理PET廢棄物會對環境造成破壞。生物法可在溫和的溫度環境下將PET聚合物降解為單體對苯二甲酸單(2-羥乙基)酯(MHET)、對苯二甲酸(TPA)和乙二醇(EG),所需的耗能低,對環境相當友善。日前許多研究已使用細菌系統生產PETase來降解PET,但因細菌具有內毒素或需要豐富的碳源生長,成為對環境有害的汙染物,因此選擇對環境友善的宿主至關重要。萊茵衣藻因其生長成本低、易於培養以及具有高等生物相同的轉譯後和轉錄後修飾,被認為是一個理想的表達宿主,更重要的是,萊茵衣藻為一光合自營生物,提供了一種有效將溫室氣體二氧化碳及太陽能轉化為目標蛋白的途徑,在生產和代謝不產生有毒廢物。因此本研究以萊茵衣藻作為宿主,開發表面展示及分泌系統,生產、分泌PETase,並固定PETase於萊茵衣藻表面,以快速且便利地回收PETase,同時提高PETase的穩定性、催化功能。
    本研究在細胞壁缺陷的CC-400萊茵衣藻表面成功展示了Spytag。至於分泌系統部分,CC-124、CC-125及CC-400均能夠分泌PETase並且水解PET,在30天於30°C恆溫光照培養下能水解PET粉末並分別產生最多16.13 μM、25.51 μM、6.63 μM濃度的TPA,其中以CC-125水解PET效率最高。最後於共培養階段,雖然並非所有組別顯示出更高的PET水解效率,但由HPLC分析結果得知,共培養對PET水解效率不會產生負面影響。未來可嘗試將分泌MHETase之萊茵衣藻一同培養,以增加副產物MHET的分解。另外,後續將持續調整表達系統,例如更換啟動子,或於基因中插入內含子,以增強萊茵衣藻轉基因表達。


    The demand for PET has surged, resulting in 30 million tons of annual production and significant PET waste. Conventional waste processing methods pose environmental threats. To address this, the biological approach degrades PET into mono(2-Hydroxyethyl) terephthalate (MHET), terephthalic acid (TPA)and ethylene glycol(EG) under mild conditions, ensuring low energy consumption and environmental friendliness. However, bacterial systems used for PETase production often release endotoxins or require rich carbon sources, making them environmentally harmful. Chlamydomonas reinhardtii, with low growth cost and ease of cultivation, is an ideal expression host. It possesses post-translational and post-transcriptional modifications and efficiently converts carbon dioxide and solar energy into target proteins without toxic waste. This study employs Chlamydomonas reinhardtii as a host for surface display and secretion of PETase, enabling convenient recovery, stability, and catalytic function enhancement.
    The study confirms Spytag display on the surface of cell wall-deficient CC-400 Chlamydomonas reinhardtii. CC-124, CC-125, and CC-400 exhibit PETase secretion and PET hydrolysis. After a 30-day culture, they produce TPA from PET powder at concentrations of 16.13 μM, 25.51 μM, and 6.63 μM, respectively. CC-125 displays the highest PET hydrolysis efficiency. Co-cultivation does not adversely affect PET hydrolysis efficiency according to HPLC analysis. Future research may focus on cultivating Chlamydomonas reinhardtii capable of secreting MHETase to enhance MHET decomposition. Additionally, the expression system will be refined to enhance transgene expression in Chlamydomonas reinhardtii, such as through promoter replacement or gene intron insertion.

    摘要 i Abstract ii 致謝 iii 目錄 iv 圖目錄 vii 表目錄 ix 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 1 1.3 研究內容 2 第二章 文獻回顧 4 2.1 表面展示技術與酶固定化 4 2.2 萊茵衣藻(Chlamydomonas reinhardtii) 5 2.1.1 萊茵衣藻表達系統 6 2.1.2 萊茵衣藻膜蛋白 9 2.1.3 萊茵衣藻分泌系統 10 2.3 聚對苯二甲酸乙二酯(PET)之降解 11 2.4 SpyTag-SpyCatcher系統 13 第三章 實驗材料及方法 16 3.1 實驗藥品及儀器 16 3.1.1 菌種與質體 16 3.1.2 實驗藥品 16 3.1.3 儀器 17 3.2 實驗方法 17 3.2.1.1 基因轉殖技術 17 3.2.1.2 質體純化法 17 3.2.1.3 聚合酶連鎖反應(Polymerase chain reaction, PCR) 18 3.2.1.4 Gibson Assembly 22 3.2.1.5 DNA瓊脂糖凝膠(Agarose Gel)電泳與回收 23 3.2.1.6 限制酶酶切作用(Digestion)與接合作用(Ligation) 24 3.2.1.7 大腸桿菌勝任細胞製備(Ultra Competent cell) 25 3.2.1.8 大腸桿菌轉型作用(Transformation) 25 3.2.1.9 萊茵衣藻核轉型作用(Nuclear Transformation) 26 3.2.1.10 萊茵衣藻基因組提取及目標基因確認 28 3.2.2 表面展示系統測試 29 3.2.2.1 SpyTag-SpyCatcher系統接合測試 29 3.2.2.2 細胞表面螢光蛋白強度測定 30 3.2.3 分泌系統測試 30 3.2.3.1 培養液中螢光蛋白強度測定 30 3.2.3.2 PETase活性測試 30 3.2.3.3 PETase水解測試 31 第四章 結果與討論 32 4.1 萊茵衣藻選擇標記(Selection Marker)的開發 32 4.1.1 pBS-pHR-NPTII-tR質體建構 32 4.1.2 不同濃度抗生素對萊茵衣藻轉化體抗性測試 34 4.2 萊茵衣藻表面展示系統 35 4.2.1 pBS-pHR-NPTII-F2A-LCI1(Spytag)-tR質體建構 35 4.2.2 表面佈置Spytag之萊茵衣藻接合反應測試 37 4.2.3 pBS-pHR-NPTII-F2A-LCI1(mCherry)-tR質體建構 40 4.2.4 表面佈置mCherry之萊茵衣藻螢光強度測定 41 4.2.5 pBS-pHR-NPTII-F2A-LCI1(SpyCat)-tR質體建構 42 4.2.6 表面佈置Spycatcher之萊茵衣藻接合反應測試 44 4.3 萊茵衣藻分泌系統 46 4.3.1. pBS-pHR-NPTII-F2A-SP7-mCherry-tR與pBS-pHR-Ble-F2A-SP7-mCherry-tR質體建構 46 4.3.2. 螢光蛋白分泌測試 48 4.3.3. pBS-pHR-NPTII-F2A-SP7-PETase-SpyCat-tR及pBS-pHR-Ble-F2A-SP7-PETase-SpyCat-tR質體建構 50 4.3.4. PETase活性測試 52 4.3.5. PET分解測試 53 4.3.6. 共培養對於PET分解效率測試 56 4.3.7. pBS-pHR-NPTII-F2A-SP7-MHETase-SpyCat-tR及pBS-pHR-Ble-F2A-SP7-MHETase-SpyCat-tR質體建構 57 4.3.8. pBS-pFea1-Ble-F2A-SP7-mCherry-tR質體建構 60 4.3.9. pBS-pHR-Blei1-F2A-SP7-mCherry-tR質體建構 61 第五章 結論與未來展望 63 5.1 萊茵衣藻表面展示系統 63 5.2 萊茵衣藻分泌系統 63 參考文獻 65 附錄 71

    1.Kim N-K, Lee S-H, Park H-D. Current biotechnologies on depolymerization of polyethylene terephthalate (PET) and repolymerization of reclaimed monomers from PET for bio-upcycling: A critical review. Bioresource Technology. 2022;363:127931.
    2.Kim HT, Kim JK, Cha HG, et al. Biological Valorization of Poly(ethylene terephthalate) Monomers for Upcycling Waste PET. ACS Sustainable Chemistry & Engineering. 2019;7(24):19396-19406.
    3.Vollmer I, Jenks MJF, Roelands MCP, et al. Beyond Mechanical Recycling: Giving New Life to Plastic Waste. Angewandte Chemie International Edition. 2020;59(36):15402-15423.
    4.Yoshida S, Hiraga K, Takehana T, et al. A bacterium that degrades and assimilates poly(ethylene terephthalate). Science. 2016;351(6278):1196-1199.
    5.Chen Z, Wang Y, Cheng Y, et al. Efficient biodegradation of highly crystallized polyethylene terephthalate through cell surface display of bacterial PETase. Science of The Total Environment. 2020;709:136138.
    6.Seo H, Kim S, Son HF, Sagong H-Y, Joo S, Kim K-J. Production of extracellular PETase from Ideonella sakaiensis using sec-dependent signal peptides in E. coli. Biochemical and Biophysical Research Communications. 2019;508(1):250-255.
    7.Gallus S, Peschke T, Paulsen M, Burgahn T, Niemeyer CM, Rabe KS. Surface Display of Complex Enzymes by in Situ SpyCatcher-SpyTag Interaction. ChemBioChem. 2020;21(15):2126-2131.
    8.Park J-H, Kim W, Lee Y-S, Kim J-H. Decolorization of Acid Green 25 by Surface Display of CotA laccase on Bacillus subtilis spores. 2019.
    9.Gal I, Schlesinger O, Amir L, Alfonta L. Yeast surface display of dehydrogenases in microbial fuel-cells. Bioelectrochemistry. 2016;112:53-60.
    10.Molino JVD, Carpine R, Gademann K, Mayfield S, Sieber S. Development of a cell surface display system in Chlamydomonas reinhardtii. Algal Research. 2022;61:102570.
    11.Sheldon RA. Enzyme immobilization: the quest for optimum performance. Advanced Synthesis & Catalysis. 2007;349(8‐9):1289-1307.
    12.Demain AL, Vaishnav P. Production of recombinant proteins by microbes and higher organisms. Biotechnology Advances. 2009;27(3):297-306.
    13.Fischer R, Liao Y-C, Hoffmann K, Schillberg S, Emans N. Molecular farming of recombinant antibodies in plants. 1999.
    14.Scott MR, Will R, Ironside J, et al. Compelling transgenetic evidence for transmission of bovine spongiform encephalopathy prions to humans. Proceedings of the National Academy of Sciences. 1999;96(26):15137-15142.
    15.Spolaore P, Joannis-Cassan C, Duran E, Isambert A. Commercial applications of microalgae. Journal of Bioscience and Bioengineering. 2006;101(2):87-96.
    16.Remacle C, Cardol P, Coosemans N, Gaisne M, Bonnefoy N. High-efficiency biolistic transformation of <i>Chlamydomonas</i> mitochondria can be used to insert mutations in complex I genes. Proceedings of the National Academy of Sciences. 2006;103(12):4771-4776.
    17.Specht E, Miyake-Stoner S, Mayfield S. Micro-algae come of age as a platform for recombinant protein production. Biotechnology Letters. 2010;32(10):1373-1383.
    18.Stevens DR, Purton S, Rochaix J-D. The bacterial phleomycin resistance geneble as a dominant selectable marker inChlamydomonas. Molecular and General Genetics MGG. 1996;251(1):23-30.
    19.Berthold P, Schmitt R, Mages W. An engineered Streptomyces hygroscopicus aph 7 ″gene mediates dominant resistance against hygromycin B in Chlamydomonas reinhardtii. Protist. 2002;153(4):401-412.
    20.Barahimipour R, Neupert J, Bock R. Efficient expression of nuclear transgenes in the green alga Chlamydomonas: synthesis of an HIV antigen and development of a new selectable marker. Plant Molecular Biology. 2016/03/01 2016;90(4):403-418.
    21.Sizova I, Fuhrmann M, Hegemann P. A Streptomyces rimosus aphVIII gene coding for a new type phosphotransferase provides stable antibiotic resistance to Chlamydomonas reinhardtii. Gene. 2001;277(1-2):221-229.
    22.Tabatabaei I, Dal Bosco C, Bednarska M, Ruf S, Meurer J, Bock R. A highly efficient sulfadiazine selection system for the generation of transgenic plants and algae. Plant biotechnology journal. 2019;17(3):638-649.
    23.Meslet-Cladiere L, Vallon O. Novel shuttle markers for nuclear transformation of the green alga Chlamydomonas reinhardtii. Eukaryotic cell. 2011;10(12):1670-1678.
    24.Fischer N, Rochaix JD. The flanking regions of PsaD drive efficient gene expression in the nucleus of the green alga Chlamydomonas reinhardtii. Molecular Genetics and Genomics. 2001;265(5):888-894.
    25.Stevens DR, Purton S, Rochaix JD. The bacterial phleomycin resistance geneble as a dominant selectable marker inChlamydomonas. Molecular and General Genetics MGG. 1996;251(1):23-30.
    26.Schroda M, Blöcker D, Beck CF. The HSP70A promoter as a tool for the improved expression of transgenes in Chlamydomonas. The Plant Journal. 2000;21(2):121-131.
    27.Jeong B-r, Wu-Scharf D, Zhang C, Cerutti H. Suppressors of transcriptional transgenic silencing in <i>Chlamydomonas</i> are sensitive to DNA-damaging agents and reactivate transposable elements. Proceedings of the National Academy of Sciences. 2002;99(2):1076-1081.
    28.Barjona do Nascimento Coutinho P, Friedl C, Buchholz R, Stute SC. Chemical regulation of Fea1 driven transgene expression in Chlamydomonas reinhardtii. Algal Research. 2017;26:323-329.
    29.Gallegos JE, Rose AB. The enduring mystery of intron-mediated enhancement. Plant Science. 2015;237:8-15.
    30.Jaeger D, Baier T, Lauersen KJ. Intronserter, an advanced online tool for design of intron containing transgenes. Algal Research. 2019/09/01/ 2019;42:101588.
    31.Eichler-Stahlberg A, Weisheit W, Ruecker O, Heitzer M. Strategies to facilitate transgene expression in Chlamydomonas reinhardtii. Planta. 2009;229(4):873-883.
    32.Baier T, Wichmann J, Kruse O, Lauersen KJ. Intron-containing algal transgenes mediate efficient recombinant gene expression in the green microalga Chlamydomonas reinhardtii. Nucleic Acids Res. Jul 27 2018;46(13):6909-6919.
    33.Zhang M-P, Wang M, Wang C. Nuclear transformation of Chlamydomonas reinhardtii: A review. Biochimie. 2021;181:1-11.
    34.Fuhrmann M, Oertel W, Hegemann P. A synthetic gene coding for the green fluorescent protein (GFP) is a versatile reporter in Chlamydomonas reinhardtii†. The Plant Journal. 1999;19(3):353-361.
    35.Donnelly MLL, Hughes LE, Luke G, et al. The ‘cleavage’ activities of foot-and-mouth disease virus 2A site-directed mutants and naturally occurring ‘2A-like’ sequences. Journal of General Virology. 2001;82(5):1027-1041.
    36.Doronina VA, Wu C, Felipe Pd, Sachs MS, Ryan MD, Brown JD. Site-Specific Release of Nascent Chains from Ribosomes at a Sense Codon. Molecular and Cellular Biology. 2008;28(13):4227-4239.
    37.de Felipe P, Luke GA, Hughes LE, Gani D, Halpin C, Ryan MD. E unum pluribus: multiple proteins from a self-processing polyprotein. Trends in Biotechnology. 2006;24(2):68-75.
    38.Rasala BA, Lee PA, Shen Z, Briggs SP, Mendez M, Mayfield SP. Robust expression and secretion of Xylanase1 in Chlamydomonas reinhardtii by fusion to a selection gene and processing with the FMDV 2A peptide. PLoS One. 2012;7(8):e43349.
    39.Rasala BA, Barrera DJ, Ng J, et al. Expanding the spectral palette of fluorescent proteins for the green microalga Chlamydomonas reinhardtii. The Plant Journal. 2013;74(4):545-556.
    40.Plucinak TM, Horken KM, Jiang W, Fostvedt J, Nguyen ST, Weeks DP. Improved and versatile viral 2A platforms for dependable and inducible high-level expression of dicistronic nuclear genes in Chlamydomonas reinhardtii. The Plant Journal. 2015;82(4):717-729.
    41.Ohnishi N, Mukherjee B, Tsujikawa T, et al. Expression of a Low CO2–Inducible Protein, LCI1, Increases Inorganic Carbon Uptake in the Green Alga Chlamydomonas reinhardtii The Plant Cell. 2010;22(9):3105-3117.
    42.Ramos-Martinez EM, Fimognari L, Sakuragi Y. High-yield secretion of recombinant proteins from the microalga Chlamydomonas reinhardtii. Plant Biotechnology Journal. 2017;15(9):1214-1224.
    43.Gangl D, Zedler JAZ, Rajakumar PD, et al. Biotechnological exploitation of microalgae. Journal of Experimental Botany. 2015;66(22):6975-6990.
    44.Rasala BA, Chao S-S, Pier M, Barrera DJ, Mayfield SP. Enhanced Genetic Tools for Engineering Multigene Traits into Green Algae. PLOS ONE. 2014;9(4):e94028.
    45.Lauersen KJ, Berger H, Mussgnug JH, Kruse O. Efficient recombinant protein production and secretion from nuclear transgenes in Chlamydomonas reinhardtii. Journal of Biotechnology. 2013;167(2):101-110.
    46.Raymond JA, Janech MG, Fritsen CH. Novel ice-binding proteins from a psychrophilic antarctic alga (Chlamydomonadaceae, chlorophyceae)1. Journal of Phycology. 2009;45(1):130-136.
    47.Molino JVD, de Carvalho JCM, Mayfield SP. Comparison of secretory signal peptides for heterologous protein expression in microalgae: Expanding the secretion portfolio for Chlamydomonas reinhardtii. PLoS One. 2018;13(2):e0192433.
    48.Rhodes CJ. Plastic pollution and potential solutions. Sci Prog. Sep 1 2018;101(3):207-260.
    49.Magalhães RP, Cunha JM, Sousa SF. Perspectives on the Role of Enzymatic Biocatalysis for the Degradation of Plastic PET. International Journal of Molecular Sciences. 2021;22(20):11257.
    50.Sinha V, Patel MR, Patel JV. Pet Waste Management by Chemical Recycling: A Review. Journal of Polymers and the Environment. 2010;18(1):8-25.
    51.Chamas A, Moon H, Zheng J, et al. Degradation Rates of Plastics in the Environment. ACS Sustainable Chemistry & Engineering. 2020;8(9):3494-3511.
    52.Müller R-J, Schrader H, Profe J, Dresler K, Deckwer W-D. Enzymatic Degradation of Poly(ethylene terephthalate): Rapid Hydrolyse using a Hydrolase from T. fusca. Macromolecular Rapid Communications. 2005;26(17):1400-1405.
    53.Maity W, Maity S, Bera S, Roy A. Emerging Roles of PETase and MHETase in the Biodegradation of Plastic Wastes. Applied Biochemistry and Biotechnology. 2021;193(8):2699-2716.
    54.Herrero Acero E, Ribitsch D, Steinkellner G, et al. Enzymatic Surface Hydrolysis of PET: Effect of Structural Diversity on Kinetic Properties of Cutinases from Thermobifida. Macromolecules. 2011;44(12):4632-4640.
    55.Joo S, Cho IJ, Seo H, et al. Structural insight into molecular mechanism of poly(ethylene terephthalate) degradation. Nature Communications. 2018;9(1):382.
    56.Chen C-C, Han X, Ko T-P, Liu W, Guo R-T. Structural studies reveal the molecular mechanism of PETase. The FEBS Journal. 2018;285(20):3717-3723.
    57.Son HF, Cho IJ, Joo S, et al. Rational Protein Engineering of Thermo-Stable PETase from Ideonella sakaiensis for Highly Efficient PET Degradation. ACS Catalysis. 2019;9(4):3519-3526.
    58.Huang X, Cao L, Qin Z, Li S, Kong W, Liu Y. Tat-Independent Secretion of Polyethylene Terephthalate Hydrolase PETase in Bacillus subtilis 168 Mediated by Its Native Signal Peptide. Journal of Agricultural and Food Chemistry. 2018;66(50):13217-13227.
    59.Zakeri B, Fierer JO, Celik E, et al. Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin. Proceedings of the National Academy of Sciences. 2012;109(12):E690-E697.
    60.Hagan RM, Björnsson R, McMahon SA, et al. NMR Spectroscopic and Theoretical Analysis of a Spontaneously Formed Lys–Asp Isopeptide Bond. Angewandte Chemie International Edition. 2010;49(45):8421-8425.
    61.Kosobokova EN, Skrypnik KA, Kosorukov VS. Overview of fusion tags for recombinant proteins. Biochemistry (Moscow). 2016;81(3):187-200.
    62.Dovala D, Sawyer WS, Rath CM, Metzger LE. Rapid analysis of protein expression and solubility with the SpyTag–SpyCatcher system. Protein Expression and Purification. 2016;117:44-51.
    63.Zhang G, Quin MB, Schmidt-Dannert C. Self-Assembling Protein Scaffold System for Easy in Vitro Coimmobilization of Biocatalytic Cascade Enzymes. ACS Catalysis. 2018;8(6):5611-5620.
    64.Liu Z, Zhou H, Wang W, Tan W, Fu YX, Zhu M. A novel method for synthetic vaccine construction based on protein assembly. Sci Rep. Dec 1 2014;4:7266.
    65.Si M, Xu Q, Jiang L, Huang H. SpyTag/SpyCatcher Cyclization Enhances the Thermostability of Firefly Luciferase. PLOS ONE. 2016;11(9):e0162318.
    66.Shimogawara K, Fujiwara S, Grossman A, Usuda H. High-Efficiency Transformation of Chlamydomonas reinhardtii by Electroporation. Genetics. 1998;148(4):1821-1828.
    67.Wang L, Yang L, Wen X, et al. Rapid and high efficiency transformation of Chlamydomonas reinhardtii by square-wave electroporation. Bioscience Reports. 2019;39(1).
    68.Cao M, Fu Y, Guo Y, Pan J. Chlamydomonas (Chlorophyceae) colony PCR. Protoplasma. 2009;235(1):107-110.
    69.Han X, Liu W, Huang J-W, et al. Structural insight into catalytic mechanism of PET hydrolase. Nature Communications. 2017;8(1):2106

    無法下載圖示 全文公開日期 2026/08/07 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE