簡易檢索 / 詳目顯示

研究生: 潘力誌
Li-Chih Pan
論文名稱: 鉛心橡膠支承墊多軸向遲滯行為之試驗與分析研究
Experimental and Analytical Study on Multiaxial Hysteresis Behavior of Lead Rubber Bearings
指導教授: 黃震興
Jenn-Shin Hwang
口試委員: 邱建國
Chien-Kuo Chiu
汪向榮
Shiang-Jung Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 230
中文關鍵詞: 鉛心橡膠隔震支承墊扭轉耦合效應多軸向遲滯行為非比例平面軌跡載重數學分析模型
外文關鍵詞: lead-rubber bearing, multiaxial hysteresis behavior, non-porportional bilateral loading, mathematical model, torsional coupling effect
相關次數: 點閱:415下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在鉛心橡膠支承墊分析模型研究發展中,多數研究仍探討其受不同形式水平單軸向加載下之行為,而本研究為探討鉛心橡膠支承墊於垂直軸壓下,受雙軸向非比例平面軌跡載重下之行為,利用圓形與正方形之平面軌跡加載,探討扭轉耦合效應對於不同平面軌跡下支承墊有效勁度、等效阻尼比以及遲滯行為,並進行模擬雙軸向非比例平面軌跡載重下之遲滯行為,故本研究以三維材料組合定律為基礎,將水平單軸向數學分析模型延伸至雙軸數學分析模型,並藉由雙軸向非比例平面軌跡加載試驗結果與數學分析模型之比較,以驗證延伸後雙軸數學分析模型之適用性,進而提升數學分析模型應用於模擬鉛心橡膠支承墊遲滯行為之準確性。此外,根據試驗結果顯示,鉛心橡膠支承墊在經過多次振動台試驗後,其遲滯消能能力明顯降低,故本研究建議於實務應用上,為充分瞭解鉛心橡膠承墊於地震後之力學行為,應抽出一組隔震支承墊進行性能試驗,以驗證其是否還保有原始設計功能。


In existing study for hysteresis behavior of lead-rubber bearings (LRB), the bearings have been typically subjected to cyclic unilateral loading. In this study, non-proportional loading paths including circular orbit and square orbit is schemed to investigate the cyclic hysteresis of the bearing. Through the comparison between the results under different test conditions, the torsional coupling effect induced by non-proportional loading paths is less significant compared with that to high damping rubber bearings (HDRB) on bearing hysteresis behavior.

Three constitutive models implemented with the plane vector concept are employed to correlate the analytical results with the experimental results. With the decent agreement between the measurement and simulation, it is concluded that the extended mathematical model is more accurate and applicable for capturing the bilateral hysteresis behavior of LRB. In addition, hysteresis dissipation capacity of LRB is obviously decayed after several shaking table tests.

摘要 I Abstract II 目錄 IV 表目錄 VII 圖目錄 X 第一章 緒論 1 1.1研究背景與目的 1 1.2研究重點與內容 3 第二章 鉛心橡膠支承墊之力學行為 5 2.1前言 5 2.2鉛心橡膠支承墊之基本力學行為 5 2.3軸向力效應之影響 7 2.4扭轉耦合效應之影響 9 第三章 鉛心橡膠支承墊分析模型 11 3.1前言 11 3.2 分析模型介紹 11 3.2.1 Abe 分析模型 11 3.2.1.1 單軸向 Abe 分析模型 11 3.2.1.2 雙軸向 Abe 分析模型 13 3.2.2 修訂Hwang分析模型 14 3.2.2.1 修訂單軸向Hwang 分析模型 14 3.2.2.2 修訂雙軸向Hwang 分析模型 15 3.2.3 Bouc-Wen分析模型 16 3.2.3.1 單軸向 Bouc-Wen分析模型 16 3.2.3.2 雙軸向 Bouc-Wen分析模型 17 3.3 模型參數識別 18 3.3.1 非線性最小平方差 18 3.3.2 下降式單純形法 20 3.3.3 最佳化方法之比較 21 第四章 多軸向非比例平面載重軌跡試驗 23 4.1 試驗設施 23 4.1.1 試體架設裝置 23 4.1.2 量測儀器 24 4.2 試驗用縮尺鉛心橡膠支承墊 24 4.3 試驗程序與結果 25 4.3.1水平單軸向反覆載重試驗程序及結果 26 4.3.2雙軸向平面軌跡加載試驗程序及結果 26 4.3.3鉛心橡膠支承墊於試驗後之反應 32 4.4 水平單軸向反覆載重與雙軸向平面軌跡加載試驗結果比較 33 第五章 數值分析與試驗結果之比較 35 5.1 Abe數值分析結果與試驗結果之比較 35 5.2 修訂Hwang數值分析結果與試驗結果之比較 36 5.3 Bouc-Wen數值分析結果與試驗結果之比較 36 5.4 數值分析之比較 36 第六章 結論與建議 39 6.1結論 39 6.2建議 40 參考文獻 41 附錄一 224

【1】 羅俊雄,“九二一集集大地震全面勘災精簡報告”,國家地震工程研究中心研究報告,NCREE-99-033,民國八十八年。
【2】 內政部營建署,“建築物耐震設計規範及解說”民國一百年七月。
【3】 Guide Specilcations for Seismic Isolation Design. American Association of State Highway and Transportation Officials,Washington, DC, 1999.
【4】 Manual for Menshin Design of Highway Bridges. Public Works Research Institute, Ministry of Construction of Japan, Tsukuba City, 1991.
【5】 SAP2000. Computer and Structures, Inc., Berkeley, California, USA
【6】 ETABS. Computer and Structures, Inc., Berkeley, California, USA
【7】 Abe M, Yoshida J, Fujino Y. Multiaxial Behaviors of Laminated Rubber Bearings and Their Modeling. I: Experimental Study. Journal of Structural Engineering 2004; 130(8): 1119-1132.
【8】 Abe M, Yoshida J, Fujino Y. Multiaxial Behaviors of Laminated Rubber Bearings and Their Modeling. II: Modeling. Journal of Structural Engineering 2004; 130(8): 1133-1144.
【9】 Ö zdemir, H. (1973). “Nonlinear transient dynamic analysis of yielding
structures.” PhD dissertation, University of California, Berkeley,Berkeley, Calif.
【10】 Graesser, E.J., and Cozzarelli, F.A. (1989). “Multidimensional model
of hysteretic material behavior for vibration analysis of shape memory
energy absorbing devices. Technical Rep.NCEER-89-0018.State University of New York at Buffalo, Buffalo, N.Y.
【11】 Hwang JS, Wu JD, Pan TC, Yang G., “ A Mathematical Hysteretic 42
Model for Elastomeric Isolation Bearing.”Earthquake Engineering and Structural Dynamics, 31(4),2002, pp.771-789.
【12】 江衍弘,“高阻尼橡膠隔震支承墊之分析模型修訂與驗證試驗研究”,碩士論文,國立台灣科技大學,2014。
【13】 黃柏文,“高阻尼橡膠隔震支承墊多軸向遲滯行為之試驗與分析研究”, 碩士論文,國立台灣科技大學,2015。
【14】 R. Bouc, “Force vibration of mechanical systems with hysteresis,” Abstract. Proc. 4th conf. on nonlinear oscillation, Prague,Czechoslovakia, 1967.
【15】 Y. K. Wen, “Method of random vibration of hysteretic systems,” J. Eng.Mech-ASCE, Vol. 102, p. 249, 1976.
【16】 許丁友,“LRB 隔震房屋結構之三軸向地震力試驗研究”,碩士論文,國立台灣科技大學,1999。
【17】 Skinner, R. I., Robinson, W. H. and McVerry, G. H., “ Seismic isolation in New Zealand. ” Nuclear Engineering and Design,127,p281-89,1991.
【18】 林育祺,“鉛心橡膠支承墊之擬靜態與動態遲滯特性”,碩士論文,國立台灣科技大學,1997。
【19】 Moss, P. J., Carr, A. J.and Cooke, N. (1996).“The Seismic Behavior
of Elastomeric and Lead-Rubber Bearings” 11th World Conference on Earthquake Engineering, 1692
【20】 郭文吉,“使用鉛心橡膠支承墊之隔震橋面版振動台試驗”,碩士論文,國立台灣科技大學,1996。
【21】 Koh, C. G., and Kelly, J. M. (1989). ‘‘Viscoelastic stability model for elastomeric isolation bearings.’’ J. Struct. Engrg., ASCE, 115(2), 285–
302
43
【22】 Haringx, J. A. (1948). ‘‘On highly compressible helical springs and
rubber rods and their application for vibration-free mountings. I.’’Philips Res.Rep., 3, 401–449.
【23】 Haringx, J. A. (1949a). ‘‘On highly compressible helical springs and
rubber rods and their application for vibration-free mountings.II.’’Philips Res. Rep., 4, 49–80.
【24】 Haringx, J. A. (1949b). ‘‘On highly compressible helical springs and
rubber rods and their application for vibration-free mountings.III.’’Philips Res. Rep., 4, 206–220.
【25】 Ryan, K. L., Kelly, J. M. and Chopra, A. K. (2004). ‘‘Experimental
observation of axial effects in isolation bearings.’’ 13th World Conference on Earthquake Engineering, 1707
【26】 Moussa, L., Ali, Z. Abdelkader, B. and Rahman, M. (2014).‘‘Nonlinear model for Lead Rubber Bearings including axial load effects and large deformations.’’ International Journal of Civil and Structural Engineering. 1 (3): pp. 173-176.
【27】 Conversy, F.(no title), Memoire, Anales des Ponts et Chaussies,Vol.4,
1967.
【28】 Masashi Yamamoto, Shigeo Minewaki, Naoto Kamoshita, Masaru Kikuchi, Ken Ishii,Osamu, Kouchiyama, Takahito Nakamura,‘‘Behaviors of a Sliding Rubber Bearing under Horizontal Bidirectional Loadings”, Proceeding of the15thWorld Conference on Earthquake Engineering, 2012.
【29】 Madsen, K., Nielsen, H.B., and Tingleff, O., Method for Non-linear
Least squares Problems, 2?? ed., Informatics and Mathematical Modeling, Technical University of Denmark, 2004.
【30】 Kelley, C.T., Iterative Methods for Optimization, SIAM, Frontiers in
44 Applied Mathematics 18, 1999.
【31】 Press, H. W., Flannery, B. P., Teukolsky, S. A., and Vetterling, T. W.(1988). “Numerical recipes in C”, Cambridge University Press,London.
【32】 Takahito Nakamura, Osamu Kouchiyama, Masaru Kikuchi,“Behaviors of lead rubber bearing under horizontal bi-directional loading test”, roceeding of the15thWorld Conference on Earthquake Engineering, 2012.

QR CODE