簡易檢索 / 詳目顯示

研究生: 曾義恆
Yi-Heng Zeng
論文名稱: 智慧電網-需求端電源管理之分散式最佳化演算法研究
Study of Distributed Optimization Algorithms for Demand Side Management in Smart Grid
指導教授: 張縱輝
Tsung-hui Chang
口試委員: 林士駿
Shih-chun Lin
鐘偉和
Wei-huo Zhong
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 70
中文關鍵詞: 智慧電網需求端電源管理自我回歸分析分散式
外文關鍵詞: Smart grid, demand side management, autoregressive model, decentralized structure
相關次數: 點閱:301下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在此論文探討應用於未來智慧電網的合作式需求端電源管理技術。具體而言,我們考慮-電力公司集中管理一個社區內用戶們的可控制負載,執行負載排程以達電網平衡之目的,此包括可推遲式負載(例如: 洗衣機、洗碗機等)、可調控式負載(例如: 電動車)與儲存型負載(例如: 電池)等。我們的主要目的為實現即時(real-time)、完全分散式的合作式需求端電源管理。為達此目標,第一,我們發展一基於多重自我迴歸分析(multi-stage autoregressive method)來預估短期未來太陽能電量;第二,利用滾動視窗(rolling window)的概念來執行即時的負載排程;第三,應用分散式的最佳化演算法。其中,我們應用了三種分散式最佳化方法來執行負載規劃,包含對偶次梯度法(dual subgradient method)、對偶共識性次梯度法(dual consensus subgradient)及對偶共識性交替方向收縮法(dual consensus alternating directions method of multipliers, DC-ADMM)。模擬結果證明了以上三種分散式演算法皆可明顯改善電網平衡並且DC-ADMM能提供最佳的性能。


    This thesis investigates the cooperative DSM (CoDSM) technique for future smart grid. In particular, we consider that a load aggregator (e.g., the utility company) coordinates the energy consumption of a neighborhood with a large number of customers, in order to achieve real-time power balance. The deferrable loads (such as the dish washer and washing machine etc.) , adjustable loads (e.g., Electric Vehicles (EV) ) and storage devices (e.g., battery) are considered. Our main interest lies in achieving the real power balance by solving the CoDSM problem in a real-time and fully decentralized manner. To this goal, firstly, we develop a multi-stage linear prediction method for estimating the solar power generation in a short future period of time; secondly, a rolling window based control method, which can exploit both real-time and predicted solar power for real-time CoDSM is used; thirdly, distributed optimization methods are applied. Specifically, we study the load scheduling performance of three state-of-the-art distributed algorithms, namely, the distributed dual subgradient (DS) method, the dual consensus subgradient (DCS) method and the dual consensus alternating direction method of multipliers (DC-ADMM). Simulation results show that the distributed CoDSM algorithms can improve the power balance significantly and the DC-ADMM method performs best.

    1 Background 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Advanced Metering Infrastructure . . . . . . . . . . . . . . . . 4 1.3 Demand Side Management Technique . . . . . . . . . . . . . . 5 1.3.1 Direct Load Control . . . . . . . . . . . . . . . . . . . 6 1.3.2 Price-based Load Control . . . . . . . . . . . . . . . . 7 1.4 Power Market . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.4.1 Day-ahead power market . . . . . . . . . . . . . . . . . 8 1.4.2 Real-time power market . . . . . . . . . . . . . . . . . 8 2 Load Model and Problem Statement 10 2.1 Cooperative DSM (CoDSM) . . . . . . . . . . . . . . . . . . . 10 2.2 Load Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.1 Deferrable loads . . . . . . . . . . . . . . . . . . . . . . 12 2.2.2 Electric Vehicles (EVs) . . . . . . . . . . . . . . . . . . 13 2.2.3 Storage Model . . . . . . . . . . . . . . . . . . . . . . . 15 2.2.4 Uncontrollable loads . . . . . . . . . . . . . . . . . . . 16 2.3 The CoDSM Problem . . . . . . . . . . . . . . . . . . . . . . . 16 3 Solar Power Model and Prediction 18 3.1 Autoregressive Model . . . . . . . . . . . . . . . . . . . . . . . 18 3.1.1 Single-Step Prediction . . . . . . . . . . . . . . . . . . 19 3.1.2 Multi-Step Prediction . . . . . . . . . . . . . . . . . . . 20 3.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . 21 3.2.1 Simulation Result of Solar Power Prediction . . . . . . 21 3.2.2 Prediction Result of Unscheduled loads . . . . . . . . . 22 4 Existing Methods for solving CoDSM 28 4.1 On-line Scheduling in Rolling Window . . . . . . . . . . . . . 28 4.2 Problem Reformulation . . . . . . . . . . . . . . . . . . . . . . 29 4.3 Dual Subgradient Method for solving Problem (4.4) . . . . . . 31 4.4 Dual Consensus Subgradient Method for solving Problem (4.4) 32 4.5 DC-ADMM for solving Problem (4.4) . . . . . . . . . . . . . . 34 5 Simulation results and Discussions 43 5.1 CoDSM in off-line scheduling . . . . . . . . . . . . . . . . . . 43 5.2 CoDSM in on-line scheduling . . . . . . . . . . . . . . . . . . 45 6 Conclusion and Future Directions 52 6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 6.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . 53

    [1] \Urban life: Open-air computers," The Economist. 27, Oct. 2012.
    [2] M. Albadi and E.El-Saadany, \A reliability perspective of the smart grid," IEEE
    Trans. Smart Grid, vol. 1, no. 1, pp. 57{64, June 2010.
    [3] M. Alizadeh, X. Li, Z.Wang, A. Scaglione, and R. Melton, \Demand side management
    in the smart gird: Information processing for the power switch," Signal Processing
    Magazine, vol. 59, no. 5, pp. 55{67, 2012.
    [4] P. Palensky and D. Dietrich, \Demand side management: Demand response, intelli-
    gent energy systems, and smart loads," IEEE Trans. on Industrial informatics, vol. 7,
    no. 6, Aug. 2011.
    [5] I. Atzeni, L. G. Ordonez, G. Scutari, D. P.Palomar, and J. R. Fonollosa, \Noncoop-
    erative and cooperative optimization of distributed energy generation and storage in
    the demand-side of the smart grid," IEEE Tran. Signal Processing, vol. 61, no. 10,
    May 2013.
    [6] T.-H. Chang, M. Alizadeh, and A. Scaglione, \Coordinated home energy management
    for real-tome power balancing," San Diego, CA, USA, 2012, pp. 1{8.
    [7] Z. Baharlouei and M. Hashemi, \Efficiency-fairness trade-off in privacy-preserving
    autonomous demand side management," IEEE Trans. on Smart Grid, vol. 5, no. 2,
    Mar. 2014.
    [8] M. A. A. Pedrasa, T. D. Spooner, and I. F. MacGill, \Coordinated scheduling of
    resigential distributed energy resources to optimize smart home energy services,"
    IEEE Trans. on Smart Grid, vol. 1, no. 2, Sep. 2010.
    [9] Q. R. Hamid and J. A. Barria, \Distributed recharging rate control for energy demand
    management of electric vehicles," IEEE Trans. on Power Systems, vol. 28, no. 3, Aug.
    2013.
    [10] L. Jiang and S. H. Low, \Multi-period optimal procurement and demand responses
    in the presence of uncertain supply," in Proc. IEEE Conf. on Decision and Control,
    Orlando, FL, USA, Dec. 12-15, 2011, pp. 1{9.
    [11] N. Li, L. Chen, and S. H. Low, \Optimal demand response based on utility max-
    imization in power networks," in Proc. IEEE PES General Meeting, Detroit, MI,
    USA, July 24-29, 2011, pp. 1{8.
    [12] L. Huang, J. Walrand, and K. Ramchandran, \Optimal power procurement and de-
    mand response with quality-of-usage guarantees," in IEEE Power and Energy Society
    General Meeting, 2012, pp. 1{8.
    [13] J. Medina, N. Muller, and I. Roytelman, \Demand response and distributiob grid
    operations: Opportunities and challenges," IEEE Trans. on Smart Grid, vol. 1, no. 2,
    Sep. 2010.
    [14] M. Alizadeh, A. Scaglione, and R. J. Thomas, \From packet to power switching:
    Digital direct load scheduling," IEEE JSAC, vol. 30, no. 6, pp. 1027{1036, July 2012.
    [15] T.-H. Chang, M. Alizadeh, and A. Scaglione, \Real-time power balancing via decen-
    tralized coordinated home energy scheduling," IEEE Trans. Smart Grid, vol. 4, no. 3,
    pp. 1490{1504, Sept. 2013.
    [16] N. Gatsis and G. B. Giannakis, \Residential load control: Distributed scheduling and
    convergence with lost AMI messages," IEEE Trans. Smart Grid, vol. 2, no. 3, pp.
    1{17, Feb. 2012.
    [17] ||, \Decomposition algorithms for market clearing with large-scale demand re-
    sponse," IEEE Trans. Smart Grid, vol. 4, no. 4, pp. 1976{1987, Dec. 2013.
    [18] S. Boyd and A. Mutapcic. Subgradient methods. [Online]. Available: http:
    //see.stanford.edu/class/ee392o/subgradn method.pdf
    [19] B. Johansson, T. Keviczky, M. Johansson, and K. H. Jogansson, \Subgradient methos
    and consensus algorithms for solving convex optimization problems," in Proc. IEEE
    Conf. Decision and Control, Cancun, Mexico, 2008, pp. 4185{4190.
    [20] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Echstein, Distributed Optimization and
    Statistical Learning via Alternating Direction Method of Multipliers. Foundations
    and Trends in Machine Learning, 2011.
    [21] D. P. Berteskas, Dynamic Programming and Optimal Control: Vol 1. Nashua, NH,
    USA: Athena Scienti c, 2007.
    [22] S. Report, Assessment of Demand Response and Advanced Metering. Federal Energy
    Regulatory Commission, 2008.
    [23] C. McKerracher and J. Torriti, \Energy consumption feedback in perspective: in-
    tegrating australian data to meta-analysis on in-home displays," Energy Efficiency,
    Jan 2012.
    [24] P. Yi, X. Dong, A. Iwayemi, C. Zhou, and S. Li, \Real-time opportunistic scheduling
    for residential demand response," Signal Processing Magazine, vol. 4, no. 1, pp. 227{
    234, Mar. 2013.
    [25] H. Farhangi, \The path of the smart grid," IEEE Power Enegy Mag., vol. 8, no. 1,
    pp. 18{28, Jan.-Feb 2010.
    [26] M. Alizadeh, X. Li, Z. Wang, A. Scaglione, and R. Melton, \Demand-side manage-
    ment in the smart grid," IEEE Signal Processing Magazine, vol. 29, no. 5, pp. 56{67,
    2012.
    [27] A.-H. Mohsenian-Rad and A. Leon-Garcia, \Optimal residential load control with
    price prediction in real-time electricity pricing environments," IEEE Trans. on Smart
    Grid, vol. 1, no. 2, pp. 120{133, 2010.
    [28] M. Huneault and F. D. Galiana, \A survey of the optimal power
    ow literature,"
    Porc. IEEE Power Systems, vol. 6, no. 2, pp. 762{770, May 1991.
    [29] E. Litviniv, \Design and operation of the locational marginal prices-based electricity
    markets," IET Generation, Transmission and Distribution, vol. 4, no. 2, pp. 315{323,
    May 2010.
    [30] T. Organogianni and G. Gross, \A general formulation for lmp evaluation," Porc.
    IEEE Power Systems, vol. 22, no. 3, pp. 1163{1173, Aug. 2007.
    [31] R. H. Kwon and D. Frances, \Optimization-based bidding in day-ahead electricity
    auction markets: A review of models for power producers," in Handbook of Networks
    in Power Systems I, Energy Systems, Springer-Verlag Berlin Heidelberg, 2012.
    [32] J. Kliesch and T. Langer, \Plug-in hybrids: An environmental and economic per-
    formance outlook," IEEE Power and Energy Society (PES) General Meeting, Jul
    2011.
    [33] S. Sojoudi and S. H. Low, \Optimal charging of plug-in hybrids electric vehicles in
    smart grids," Power and Energy Society General Meeting, pp. 1{6, 2011.
    [34] L. Gan, U. Topcu, and S. H. Low, \Optimal decentralized protocol for electric vehicle
    charging," IEEE Trans. on Power System, pp. 5798{5804, 2011.
    [35] N. Gatsis and G. B. Giannakis, \Reidential load control: Distributed scehduling and
    convergence with lost ami message," IEEE Trans. Smart Grid, vol. 3, no. 2, pp.
    770{786, 2012.
    [36] A. Molderink, V. Bakker, M. G. C. Bosman, J. L. Hurink, and G. J. M. Smit, \Man-
    agement and control of domestic smart grid technology," IEEE Trans. Smart Grid,
    vol. 1, no. 2, pp. 109{119, 2010.
    [37] S. Haykin, Adaptive lter theory, 4th ed. Tom Robbins, 2002.
    [38] K. Kinoshita, M. Delcroix, T. Nakatani, and M. Miyoshi, \Suppression of late re-
    verberation effect on speech signal using long-term multiple-step linear prediction,"
    IEEE Trans. Speech Audio Process., vol. 17, no. 4, pp. 534{545, May 2009.
    [39] A. Papavasiliou and S. S.Oren, \stochastic modeling of multi-area wind production,"
    12th International Conference on Probabilitistic Method Applied to Power System,
    June 10-14 2012.
    [40] A performance calculator for gridconnected pv system. [Online]. Available:
    http://www.nrel.gov/rredc/pvwatts
    [41] J. V. Paatero and P. D. Lund, \A model for generating household electricity load
    pro les," Int. J. Energy Res., vol. 30, pp. 273{290, 2006.
    [42] S. Boyd, L. Xiao, A. Mutapcic, and J. Mattingley, \Notes on decomposition meth-
    ods," available at http://see.stanford.edu/materials/lsocoee364b/08-decomposition
    notes.pdf.
    [43] ||. Notes on decomposition methods. [Online]. Available: http://see.stanford.
    edu/materials-/lsocoee364b/08decompositionn notes.pdf
    [44] A. Nedic, A. Ozdaglar, and P. A. Parrilo, \Constrained consensus and optimization
    in multi-agent networks," IEEE Trans. Autom. Control, vol. 55, no. 4, pp. 922{938,
    Apr. 2009.
    [45] T.-H. Chang, M. Hong, and X. Wang, \Multi-agent distributed optimization via
    inexact consensus admm," IEEE Trans. Signal Processing, 2014.
    [46] J. Sinopoli, Smart Building Systems for Architects, Owners, and Builders, 2010.
    [47] M. Houwing, R. R. Negenborn, and B. D. Schutter, \Demand response with micro-chp
    system," Proceeding of the IEEE Trans., vol. 99, no. 1, Jan. 2010.

    QR CODE