簡易檢索 / 詳目顯示

研究生: 邱宗聖
Tsung - Sheng Chiu
論文名稱: 高壓下超臨界二氧化碳與乙二醇醚類雙成分混合物之汽液平衡研究
Vapor - Liquid Equilibrium of Binary Mixtures Containing Supercritical Carbon Dioxide and Glycol Ethers at Elevated Pressures
指導教授: 李明哲
Ming-Jer Lee
林河木
Ho-Mu LIn
口試委員: 李夢輝
none
汪上曉
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 145
中文關鍵詞: 汽液相平衡超臨界二氧化碳乙二醇醚高壓
外文關鍵詞: VLE, supercritical carbon dioxide, glycol ether, high-pressure
相關次數: 點閱:239下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用半流動式汽液平衡量測裝置,量取二氧化碳與乙二醇醚類 (ethylene glycol monopropyl ether, diethylene glycol methyl ether, diethylene glycol dimethyl ether及diethylene glycol monoethyl ether) 四組雙成份系統的汽液相平衡數據,平衡溫度在333.15 K ~ 413.15 K之間,而壓力高至23 MPa或接近混合物之臨界壓力。相同溫度和壓力下,乙二醇醚醇類在二氧化碳中之飽和溶解度依序為ethylene glycol monopropyl ether > diethylene glycol dimethyl ether> diethylene glycol methyl ether > diethylene glycol monoethyl ether。
    重質成份在二氧化碳中之溶解度,可用二氧化碳的密度準確關聯;所量得的汽液平衡數據,可利用Krichevsky-Ilinskaya (KI) 方程式關聯,並求取亨利常數。各系統之亨利常數隨溫度昇高而增大。這些相平衡數據也被用來測試不同的體積三次方型狀態方程式及混合律,用於本實驗所量測之混合物系統汽液平衡計算的合適性。本研究分別利用泡點壓力計算及驟沸計算來訂定交互作用參數,計算結果顯示泡點壓力計算使用雙交互作用參數之凡得瓦爾單一流體混合律 (Q2),一般而言,可獲得較佳的結果;驟沸計算則是Mathias-Klotz-Prausnitz混合律 (MKP) 可獲得較佳的結果。


    A semi-flow type apparatus was employed in this study to measure the vapor-liquid equilibrium (VLE) data for four binary systems composed of carbon dioxide with one of following glycol ethers : ethylene glycol monopropyl ether, diethylene glycol methyl ether, diethylene glycol dimethyl ether, and diethylene glycol monoethyl ether at temperatures from 333.15 K to 413.15 K and pressures up to 23 MPa or near the critical pressure of the mixtures. At a given condition, solubilities of the glycol ethers in carbon dioxide follow the sequence of ethylene glycol monopropyl ether > diethylene glycol dimethyl ether> diethylene glycol methyl ether > diethylene glycol monoethyl ether.
    An empirical equation correlated well the saturated vapor composition of the heavy components in terms of the density of carbon dioxide. The VLE data were utilized to determine Henry’s constants with the Krichevsky – Ilinskaya(KI)equation. It was found that the Henry’s constant increased with increasing temperature for each system. The VLE data were also used to test the validity of several cubic equations of state with various mixing rules for VLE calculations of the investigated mixtures. The binary interaction constants were determined from both the bubble point pressure calculation and the flash calculation. It showed that the two-parameter van der Waals one-fluid mixing rule (Q2) generally yielded better results from the bubble point pressure calculation and the Mathias-Klotz-Prausnitz mixing rule (MKP) was preferable from the flash calculation.

    中文摘要 I 英文摘要 II 誌謝 III 目 錄 V 圖表目錄 VII 第一章 緒論 1 1-1 超臨界流體的特性與應用 2 1-2 相平衡系統溶解度的量測 3 1-3 汽液相平衡數據的關聯與探討 7 1-4 本文之重點 9 第二章 汽液平衡量測 11 2-1 實驗裝置 11 2-2 實驗操作程序 16 2-3 汽液兩相組成之計算 20 2-4 藥品 23 2-5 實驗結果與討論 24 第三章 實驗數據之處理 45 3-1 飽和汽相中重質成份之溶解度與超臨界流體密度之關係 45 3-2 Krichevsky-Ilinskaya(KI)方程式之關聯 48 第四章 狀態方程式之汽液平衡計算 62 4-1 狀態方程式 62 4-2 泡點壓力計算與模式參數訂定 67 4-3 泡點壓力計算下模式的適用性評比 68 4-4 使用泡點壓力計算訂定之交互作用參數值的K值計算 83 4-5 驟沸計算與模式參數訂定 99 4-6 驟沸計算下模式的適用性評比 100 4-7 使用驟沸計算訂定之交互作用參數值的K值計算 116 第五章 結論與建議 131 5-1 結論 131 5-2 建議 133 符號說明 135 附錄A 137 參考文獻 138 作者簡介 145

    Adachi, Y. and B. C. Y. Lu, “Supercritical Extraction with Carbon Dioxide and Ethylene,” Fluid Phase Equilib., 14, 147-156 (1983).
    Adachi, Y. and H. Sugie, “A New Mixing Rule – Modified Conventional Mixing Rule,” Fluid Phase Equilib., 28, 103-118 (1986).
    Boukouvalas, C., N. Spiliotis, P. Coutsikos, N. Tzouvaras and Tassios, D.,“Prediction of Vapor-Liquid Equilibrium with the LCVM Model: A Linear Combination of the Vidal and Michelsen Mixing Rules Coupled with the Original UNIFAC and the t-mPR Equation of State,” Fluid Phase Equilibria, 92, pp. 75-106 (1994).
    Brelvi, S. W. and J. P. O'Connell, “Corresponding States Correlations for Liquid Compressibility and Partial Molal Volumes of Gases at Infinite Dilution in Liquids,” AIChE J., 18, 1239-1243 (1972).
    Chaikunchuensakun, S. and W. Tanthapanichakoon, “Critical Points Calculation with a Cubic Equation of State and Excess Free Energy Mixing Rules,” Fluid Phase Equilib., 209, 113-129 (2003).
    Chimowitz, E. H., F. D. Kelley, and F. M. Munoz, “Analysis of Retrograde Behavior and the Cross-over Effect in Supercritical Fluids,” Fluid Phase Equilib., 44, 23-25 (1988).
    Chimowitz, E. H. and K. J. Pennisi, “Process Synthesis Concepts for Supercritical Gas Extraction in the Crossover Region,” AIChE J., 32, 1665-1676 (1986).

    Chrastil, J., “Solubility of Solids and Liquids in Supercritical Gases,” J. Phys. Chem., 86, 3016-3021 (1982).
    Cui, H., T. Wang, F. Wang, C. Gu, P. Wang, and Y. Dai, “Transesterification of Ethylene Carbonate with Methanol in Supercritical Carbon Dioxide,” J. Supercritical Fluids, 30, 63-69 (2004).
    Czubryt, J. J., M. N. Myers, and J. C. Giddings, “Solubility Phenomena in Dense Carbon Dioxide Gas in the Range 270-1900 Atmospheres,” J. Phys. Chem., 74, 4260-4266 (1970).
    Gao, J. L.-D. , Li Zhu, Z.-Y., S.-G. Ru, “Vapor-Liquid Equilibria Calculation for Asymmetric Systems Using Patel-Teja Equation of State with a New Mixing rule,” Fluid Phase Equilibria, 224 , 213-219 (2004).

    Holderbaum, T. and J. Gmehling , “PSRK. A Group Contribution Equation of State Based on UNIFAC, ” Fluid Phase Equilibria, 70, 251-265 (1991).
    Huang, F. H., M. H. Li, L. L. Lee, K. E. Starling, and F. T. H. Chung, “An Accurate Equation of State for Carbon Dioxide,” J. Chem. Eng. Jpn., 18, 490-496 (1985).
    Huron, M. J. and J. Vidal, “New Mixing Rules in Simple Equations of State for Represening Vapor-Liquid Equilibria of Strongly Non-Ideal Mixtures,” Fluid Phase Equilibria, 3 , 255-271 (1979).

    Kiselev, S.B., J.F. Ely, S.P. Tan, H. Adidharma, and M. Radosz,
    “HRX-SAFT Equation of State for Fluid Mixtures: Application to Binary Mixtures of Carbon Dioxide, Water, and Methanol,” Ind. Eng. Chem. Res., 45, 3981-3990 (2006).
    Krichevsky, I. R. and A. A. Ilinskaya, “Partial Molar Volumes of Gases Dissolved in Liquids (The Thermodynamics of Dilute Solutions of Nonelectrolytes),” Acta Physicochim. U.S.S.R., 20, 327-348 (1945).
    Lee, R. J. and K. C. Chao, “Local Composition Embedded Equation of State for Highly Strongly Nonideal Fluid Mixtures,” Ind. Eng. Chem. Res., 28, 1251-1261 (1989).
    Leonhard, K., T. Kraska, “An Equation of State Describing the Critical Region: Extension to High Pressure” Journal of Supercritical Fluids, 16 , 1-10(1999)..
    Li, M. H., F. T. H. Chung, L. L. Lee, and K. E. Starling, “A Molecular Theory for the Thermodynamics Behavior of Polar Mixtures. II. Development of an Equation of State Based on the Local Composition Mixing Rules,” Fluid Phase Equilib., 24, 221-240 (1985).
    Mathias, P. M., H. C. Klotz, and J. M. Prausnitz, “Equation-of-State Mixing Rules for Multicomponent Mixtures: The Problem of Invariance,” Fluid Phase Equilib., 67, 31-44 (1991).
    McHugh, M. and V. Krukonis, “Supercritical Fluid Extration: Principles and Practice,” Butterworths, Boston, MA (1986).
    Mi, J. G., J. Chen, G. H. Gao, and W. Y. Fei, “Equation of State Extended from SAFT with Improved Results for Polar Fluids across the Critical Point,” Fluid Phase Equilib., 201, 295-307 (2002).
    Michelsen, M. L., “Modified Huron-Vidal Mixing Rule for Cubic Equations of State,” Fluid Phase Equilib., 60 , 213-219 (1990).
    Mohamed, R. S. and G. D. Holder, “High Pressure Phase Behavior in Systems Containing CO2 and Heavier Compounds with Similar Vapor Pressures,” Fluid Phase Equilib., 32, 295-317 (1987).
    Orbey, H. and S.I., Sandler, “On the Combination of Equation of State and Excess Free Energy Models,” Fluid Phase Equilib., 111, 53-70 (1995).
    Park, S. J., T. Y. Kwak, and G. A. Mansoori, “Statistical Mechanical Description of Supercritical Fluid Extraction and Retrograde Condensation,” Int. J. Thermophysics, 8, 449-471 (1987).
    Patel, N. C. and A. S. Teja, “A New Cubic Equation of State for Fluids and Fluid Mixtures,” Chem. Eng. Sci., 37, 463-473 (1982).
    Peng, D. Y. and D. B. Robinson, “A New Two-constant Equation of State,” Ind. Eng. Chem. Fundam., 15, 59-64 (1976).
    Pfohl, O., S. Petkov, and G. Brunner, “Usage of PE - A Program to Calculate Phase Equilibria,” English Software Manual, Utz-Verlag, Munchen (1998).
    Prausnitz, J. M., R. N. Lichtenthaler, and E. G. de Azevedo, “Molecular Thermodynamics of Fluid Phase Equilibria,” 2nd ed., Prentice-Hall Inc., Englewood Cliffs, N. J. (1986).
    Rackett, H. G., “Equation of State for Saturated Liquids,” J. Chem. Eng. Data, 15, 514-517 (1970).
    Reid, R. C., J. M. Prausnitz, and B. E. Poling, “The Properties of Gases and Liquids,” 4th ed., McGraw-Hill, New York (1987).
    Robin, S. and B. Vodar, “Solubility in Compressed Gases,” Discuss. Faraday Soc., 36, 223-238 (1953).
    Smith, R. L., “Review of Glycol Ether and Glycol Ether Ester Solvents Used in the Coating Industry,” Enviromental Health Perspectives, 57, 1-4 (1984).
    Soave, G., “Equilibrium Constants from a Modified Redlich-Kwong Equation of State,” Chem. Eng. Sci., 27, 1197-1203 (1972).
    Spencer, C. F. and S. B. Alder, “A Critical Review of Equations for Predicting Saturated Liquid Density,” J. Chem. Eng. Data, 23, 82-89 (1978).
    Spencer, C. F. and R. P. Danner, “Improved Equation for Prediction of Saturated Liquid Density,” J. Chem. Eng. Data, 17, 236-241 (1972).
    Stahl, E., W. Schilz, E. Schultz, and E. Willing, “A Quick Method for the Microanalytical Evaluation of the Dissolving Power of Supercritical Gases,” Angew. Chem. Int. Ed. Engl., 17, 731-738 (1978).
    Veranna, D. and D. N. Rihani, “Review of Density Estimation of Saturated Liquid Mixtures,” J. Chem. Eng. Data, 25, 263-271 (1980).
    Walas, S. M., “Phase Equilibria in Chemical Engineering,” Butterworth, Boston (1985)
    Wong, D. S. H. and S. I. Sandler, “Theoretically Correct Mixing Rule for Cubic Equations of State,” AIChE J., 38, 671-680 (1992).
    Xu, Z. and S. I. Sandler, “Temperature-Dependent Parameters and the Peng-Robinson Equation of State,” Ind. Eng. Chem. Res., 26, 601-606 (1987).
    Yamada, T. and R. D. Gunn,“Saturated Liquid Molar Volumes. The Rackett Equation,”J. Chem. Eng. Data, 18, 234-236 (1973).
    Yang, T., G.-J., Chen, W., Yan, and T.-M., Guo, “Extension of the Wong-Sandler Mixing Rule to the Three-Parameter Patel-Teja Equation of State: Application up to the Near-Critical Region,” Chemical Engineering Journal, 67, 27-36 (1997).

    中文部分
    林河木、李明哲,“超臨界流體系統平衡溶解度之量測及關聯”,化工技術,第六卷,第十期,第120-138頁,民國八十七年。
    林河木、李明哲,“高溫汽-液相平衡量測與數據關聯”,化工,第四十三卷,第五期,第33-42頁民國八十五年。
    蔡坤龍、陳經緯、蔡繁男,“超臨界流體萃取”,化工,第四十二卷,第三期,第32-47頁,民國八十四年。
    蔡炳松,“高壓下重質酯類與二氧化碳之汽液相平衡研究”,碩士論文,國立台灣科技大學,民國九十四年。
    蘇育德,“高壓下超臨界二氧化碳與碳酸酯類雙成分混合之物汽液相平衡研究”,碩士論文,國立台灣科技大學,民國九十五年。
    衛子健,“鋰電池之PMMA系膠態高分子電解質之研究”,碩士論文,國立清華大學,民國八十八年。
    楊長榮,“二次鋰電池有機電解液之碳極表面鈍性膜研究”,碩士論文,國立清華大學,民國八十六年。
    陳勇利,“鋰離子電池陰極材料LiMn2-xNixO4之合成與電化學特性之探討”,碩士論文,國立中山大學,民國九十年。
    趙榮麒,“以碳化與石墨化煤焦系中間相瀝青製備鋰二次電池碳電極之研究”,碩士論文,私立逢甲大學,民國九十二年。

    QR CODE