簡易檢索 / 詳目顯示

研究生: 周毅呈
Yi-Cheng Zhou
論文名稱: 電沉積技術製備鑭摻雜四氧化三鈷陰極於鋅空氣電池之研究
Preparation of La-Doped Co3O4 by Electrodeposition Technique for Cathode of Zinc-Air Battery
指導教授: 郭東昊
Dong-Hau Kuo
口試委員: 薛人愷
Ren-Kae Shiue
柯文政
Wen-Cheng Ke
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 124
中文關鍵詞: 電化學沉積退火四氧化三鈷鑭摻雜奈米片狀全電池量測
外文關鍵詞: Electrochemical deposition, annealing, Co3O4, lanthanum doping, nanosheets, full cell measurement
相關次數: 點閱:178下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究透過簡單的電化學沉積以及退火技術,成功的在碳布上製備出ORR與OER催化活性均表現優異的雙功能空氣陰極。實驗中,我們進行多部分的研究,從篩選材料、改變退火溫度、摻雜第二種金屬、確認摻雜後退火溫度,最後到比較不同La濃度對性質影響,並選出適當的摻雜濃度進而組裝成電池。並透過SEM、EDS、XRD、Raman、XPS、TEM來分析表面特徵,電化學以及電池性質測試則藉由雙頻恆電位/電流/交流阻抗儀進行量測。
根據SEM結果得知,電沉積Co源並經由退火後會使表面結構改變,產生奈米片狀結構,XRD以及Raman分析則確認此結構為尖晶石Co3O4,而藉由適當的鑭摻雜則可取代部分Co3+,導致有更高的比表面積,進而有更多的催化活性位點,增進電子效益提升導電性,並藉XPS分析探討鑭摻雜濃度對於取代Co3+對性質之影響。
電化學量測結果顯示,在0.1 M KOH氧氣環境下,La0.025-Co/CC-350薄膜有著良好的ORR與OER性能,經LSV氧氣還原反應量測,半波電位達到0.85 V,Tafel斜率值為21.5 mV/dec;而析氧反應在10 mA cm-2電流密度時,過電壓為0.33 V,Tafel斜率值為41.2 mV/dec;CV量測電雙層電容值為99.2 mF/cm2。因此,我們將性質優異的La0.025-Co/CC-350作為空氣陰極,對電極為鋅,電解液為6 M KOH與0.2 M醋酸鋅,經過全電池量測後,開路電壓為1.42 V,得到比電容為789 mAh/gzn、能量密度為903 Wh/kg,並經充電及放電各10分鐘,循環300次後(100小時),電壓間隙僅增加0.02 V;而鋅空氣電池理想觸媒Pt/C+RuO2比電容為736 mAh/gzn、能量密度為908 Wh/kg,長時間充放電則無法達到300次循環,再次證明本研究之雙功能觸媒的優異性。


A bifunctional Zn-air battery air cathode with excellent catalytic activity for both ORR and OER was successfully fabricated on carbon cloth through simple electrochemical deposition and annealing techniques. The experiment can be divided into multiple sections, from screening materials, changing the annealing temperature, doping the second metal, confirming the annealing temperature after doping, comparing the effect of different La concentrations on the properties, and finally selecting the appropriate doping concentration to assemble into a zinc air battery. The surface features were analyzed by SEM, EDS, XRD, Raman, XPS, and TEM. The electrochemical and battery properties were measured by electrochemical testing.
According to the SEM results, the electrodeposition of the Co source and annealing change the surface structure, resulting in a nano-flake structure. XRD and Raman analysis confirm that this structure is Co3O4 spinel. By partially replaced Co3+ by lanthanum at appropriate doping amount, the La-doped Co3O4 led to a higher specific surface area for more catalytically active sites, which is expected to enhance electrode surface reaction and improves electrical conductivity. XPS analysis was used to explore the effect of lanthanum doping concentration on the electrode properties of Co3O4.
The electrochemical measurement results showed that the La0.025-Co/CC-350 film had good ORR and OER performance in the 0.1 M KOH electrolyte purged with flowing oxygen to keep oxygen environment. The half-wave potential reached 0.85 V and the Tafel slope value was 21.5 mV/dec. When the oxygen evolution reaction was conducted at a current density of 10 mA cm-2, the overpotential of 0.33 V and the Tafel slope value of 41.2 mV/dec were achieved. The double-layer capacitance value measured by CV was 99.2 mF/cm2. Therefore, we selected La0.025-Co/CC-350 with excellent electrode properties as the cathode and zinc foil as the anode to assemble of zinc-air battery in an electrolyte with 6 M KOH and 0.2 M zinc acetate. The full battery showed the open circuit voltage of 1.42 V, the specific capacity of 789 mAh/gzn, and the energy density of 903Wh/kg. For a cyclic stability test at charging and discharging for 10 minutes each, the zinc-air battery had energy gap of 0.88 V after 300 cycles (100 hours) with only a 0.02 V increase. The Pt/C+RuO2 is an ideal model catalyst for the air cathode of zinc-air battery with the specific capacity of 736 mAh/gzn and the energy density of 908 Wh/kg, but it cannot sustain the 300-cycle charge and discharge stability test. At last, this work has achieved a bifunctional La-doped Co3O4 air cathode for zinc-air battery, which is superior to the model Pt/C+RuO2 air cathode.

摘要 i ABSTRACT ii 致謝 iv 目錄 v 圖目錄 x 表目錄 xviii 第一章、緒論 1 1.1前言 1 1.2研究動機與目的 2 第二章、文獻回顧與原理 3 2.1鋅空氣電池介紹 3 2.2鋅空氣電池反應與機制 4 2.2.1全電池反應機制 4 2.2.2氧氣還原反應 5 2.2.3氧氣析出反應 7 2.3空氣陰極 9 2.3.1材料介紹 9 2.3.2四氧化三鈷 17 2.3.3鑭材料 27 2.4氣體擴散層 32 2.5鋅電極 32 2.6電解液 33 第三章、實驗方法與步驟 34 3.1實驗材料與規格 34 3.2實驗設備 35 3.3實驗步驟 35 3.3.1碳布裁剪與清洗 35 3.3.2電沉積製備薄膜 36 3.3.3退火製程 38 3.3.4鋅空氣電池組裝 38 3.3.5薄膜特性量測與表面結構分析 38 3.4分析儀器介紹 39 3.4.1 雙頻恆電位/電流/交流阻抗儀 39 3.4.2高解析度場發射掃描式電子顯微鏡(Field Emission Scanning Electron Microscope, FESEM) 40 3.4.3高功率X光繞射儀 (X-Ray Diffractometer, XRD) 41 3.4.4 X射線光電子能譜儀(X-ray Photoelectron Spectroscopy, XPS) 42 3.4.5場發射穿透式電子顯微鏡(Field Emission Gun Transmission Electron Microscopy, FEF-TEM) 42 3.4.6拉曼光譜儀(Raman Spectrometer) 43 第四章、結果與討論 44 4.1不同材料對所得M/CC (M= Co、Ni、Fe)薄膜分析探討 45 4.1.1 不同材料對所得M/CC (M= Co、Ni、Fe)薄膜用於氧氣還原(ORR)及析氧(OER)反應之LSV量測 45 4.2不同退火溫度對所得Co/CC-x (x= 250、350、450)薄膜分析探討 48 4.2.1 不同退火溫度對所得Co/CC-x (x= 250、350、450)薄膜用於氧氣還原(ORR)及析氧(OER)反應之LSV量測及相對應的Tafel斜率 48 4.2.2 不同退火溫度對所得Co/CC-x (x= 250、350、450)薄膜其EIS、CV量測 54 4.2.3 不同退火溫度對所得Co/CC-x (x= 250、350、450)薄膜其XRD分析 58 4.2.4不同退火溫度對所得Co/CC-x (x= 250、350、450)薄膜其Raman分析 59 4.2.5不同退火溫度對所得Co/CC-x (x= 250、350、450)薄膜其SEM及EDS分析 60 4.3不同元素摻雜對所得之N0.05-Co/CC-250 (N= Fe、V、La)薄膜分析探討 62 4.3.1 不同元素摻雜對所得之N0.05-Co/CC-250 (N= Fe、V、La)薄膜用於氧氣還原(ORR)及析氧(OER)反應之LSV量測 62 4.4不同退火溫度對所得La0.05-Co/CC-y (y= 250、350、450)薄膜分析探討 65 4.4.1不同退火溫度對所得La0.05-Co/CC-y (y= 250、350、450)薄膜用於氧氣還原(ORR)及析氧(OER)反應之LSV量測及相對應的Tafel斜率 65 4.4.2 不同退火溫度對所得La0.05-Co/CC-y (y= 250、350、450)薄膜其EIS、CV量測 71 4.4.3不同退火溫度對所得La0.05-Co/CC-y (y= 250、350、450)薄膜其XRD分析 75 4.4.4 不同退火溫度對所得La0.05-Co/CC-y (y= 250、350、450)薄膜其Raman分析 76 4.4.5不同退火溫度對所得La0.05-Co/CC-y (y= 250、350、450)薄膜其SEM及EDS分析 78 4.5不同鑭摻雜濃度對所得Laz-Co/CC-350 (z= 0.025、0.05、0.075、0.1)薄膜分析探討 80 4.5.1不同鑭摻雜濃度對所得Laz-Co/CC-350 (z= 0.025、0.05、0.075、0.1)薄膜用於氧氣還原(ORR)及析氧(OER)反應之LSV量測及相對應的Tafel斜率 80 4.5.2不同鑭摻雜濃度對所得Laz-Co/CC-350 (z= 0.025、0.05、0.075、0.1)薄膜其EIS、CV量測 86 4.5.3不同鑭摻雜濃度對所得Laz-Co/CC-350 (z= 0.025、0.05、0.075、0.1)薄膜其XRD分析 91 4.5.4不同鑭摻雜濃度對所得Laz-Co/CC-350 (z= 0.025、0.05、0.075、0.1)薄膜其Raman分析 92 4.5.5不同鑭摻雜濃度對所得Laz-Co/CC-350 (z= 0.025、0.05、0.075、0.1)薄膜其SEM及EDS分析 93 4.5.6不同鑭摻雜濃度對所得Laz-Co/CC-350 (z= 0.025、0.05、0.1)薄膜其XPS表面元素組成分析 96 4.5.7 La0.025-Co/CC-350 薄膜其TEM分析 101 4.6全電池電化學量測與分析 102 4.6.1開路電壓 103 4.6.2充放電極化曲線與功率密度 104 4.6.3比電容與能量密度 106 4.6.4長時間充放電及穩定度測試 108 4.6.5 La0.025-Co/CC-350 全電池測試後之SEM、XRD、XPS、Raman分析 109 4.7 鋅空氣電池之性質比較 113 第五章、結論 115 參考文獻 119

[1] J. Fu, Z. P. Cano, M. G. Park, A. Yu, M. Fowler, and Z. Chen, "Electrically Rechargeable Zinc-Air Batteries: Progress, Challenges, and Perspectives," Advanced Materials, 29 (2017) 1604685.
[2] A. R. Mainar, E. Iruin, L. C. Colmenares, A. Kvasha, I. D. Mratza, M. Bengoechea, O. Leonet, I. Boyano, Z. Zhang, J. A. Blazquez, "An Overview of Progress in Electrolytes for Secondary Zinc-Air Batteries and Other Storage Systems Based on Zinc," Journal of Energy Storage, 15 (2018) 304-328.
[3] X. Liu, X. Fan, B. Liu, J. Ding, Y. Deng, X. Han, C. Zhong, W. Hu, "Mapping the Design of Electrolyte Materials for Electrically Rechargeable Zinc-Air Batteries," Advanced Materials 33 (2021) 2006461.
[4] J. Pan, Y. Y. Xu, H. Yang, Z. Dong, H. Liu, and B. Y. Xia, "Advanced Architectures and Relatives of Air Electrodes in Zn-Air Batteries," Advanced Science, 5 (2018) 1700691.
[5] Z.-F. Huang, J. Wang, Y. Peng, C.-Y. Jung, A. Fisher, and X. Wang, "Design of Efficient Bifunctional Oxygen Reduction/Evolution Electrocatalyst: Recent Advances and Perspectives," Advanced Energy Materials, 7 (2017) 1700544.
[6] L. Wei, E. H. Ang, Y. Yang, Y. Qin, Y. Zhang, M. Ye, Q. Liu, C. C . Li, "Recent Advances of Transition Metal Based Bifunctional Electrocatalysts for Rechargeable Zinc-Air Batteries," Journal of Power Sources, 477 (2020) 228696.
[7] D. Liu, Y. Tong, X. Yan, J. Liang, and S. X. Dou, "Recent Advances in Carbon‐Based Bifunctional Oxygen Catalysts for Zinc‐Air Batteries," Batteries & Supercaps, 2 (2019) 743-765.
[8] P. Gu, M. Zheng, Q. Zhao, X. Xiao, H. Xue, and H. Pang, "Rechargeable Zinc–Air Batteries: A Promising Way to Green Energy," Journal of Materials Chemistry A, 5 (2017) 7651-7666.
[9] A. I. Douka, H. Yang, L. Huang, S. Zaman, T. Yue, W. Guo, B. You, B. Y. Xia, "Transition Metal/Carbon Hybrids for Oxygen Electrocatalysis in Rechargeable Zinc‐Air Batteries," EcoMat, 3 (2020) e12067.
[10] X. Chen, Z. Zhou, H. E. Karahan, Q. Shao, L. Wei, and Y. Chen, "Recent Advances in Materials and Design of Electrochemically Rechargeable Zinc-Air Batteries," Small, 14 (2018) 1801929.
[11] N. T. Suen, S. F. Hung, Q. Quan, N. Zhang, Y. J. Xu, and H. M. Chen, "Electrocatalysis for the Oxygen Evolution Reaction: Recent Development And Future Perspectives," Chemical Society Review, 46 (2017) 337-365.
[12] X. He, X. Yi, F. Yin, B. Chen, G. Li, and H. Yin, "Less Active CeO2 Regulating Bifunctional Oxygen Electrocatalytic Activity of Co3O4@N-Doped Carbon for Zn–Air Batteries," Journal of Materials Chemistry A, 7 (2019) 6753-6765.
[13] Y. Tan, W. Zhu, Z. Zhang, W. Wu, R. Chen, S. Mu, H. Lv, N. Cheng, "Electronic Tuning of Confined Sub-Nanometer Cobalt Oxide Clusters Boosting Oxygen Catalysis and Rechargeable Zn–Air Batteries," Nano Energy, 83 (2021) 105813.
[14] J. Z. He, W. J. Niu, Y. P. Wang, Q. Q. Sun, M. J. Liu, K. Wang, W. W. Liu, M. C. Liu, F. C. Yu, Y. L. Chueh, "In-Situ Synthesis of Hybrid Nickel Cobalt Sulfide/Carbon Nitrogen Nanosheet Composites as Highly Efficient Bifunctional Oxygen Electrocatalyst for Rechargeable Zn-Air Batteries," Electrochimica Acta, 362 (2020) 136968.
[15] L. Xiong, D. Ni, W. Xiong, H. Wang, and C. Ouyang, "The Thermodynamics and Electronic Structure Analysis of P-Doped Spinel Co3O4," Physical Chemistry Chemical Physics, 23 (2021) 3588-3594.
[16] Q. Liu, L. Wang, X. Liu, P. Yu, C. Tian, and H. Fu, "N-Doped Carbon-Coated Co3O4 Nanosheet Array/Carbon Cloth for Stable Rechargeable Zn-Air Batteries," Science China Materials, 62 (2019) 624-632.
[17] X. Li, N. Xu, H. Li, M. Wang, L. Zhang, and J. Qiao, "3D Hollow Sphere Co3O4/MnO2-Cnts: Its High-Performance Bi-Functional Cathode Catalysis and Application in Rechargeable Zinc-Air Battery," Green Energy & Environment, 2 (2017) 316-328.
[18] N. Xu, Y. Zhang, M. Wang, X. Fan, T. Zhang, L. Peng, X. D. Zhou, J. Qiao, "High-Performing Rechargeable/Flexible Zinc-Air Batteries by Coordinated Hierarchical Bi-Metallic Electrocatalyst and Heterostructure Anion Exchange Membrane," Nano Energy, 65 (2019) 104021.
[19] N. Xu, J. Qiao, X. Zhang, C. Ma, S. Jian, Y. Liu, P. Pei, "Morphology Controlled La2O3/Co3O4/MnO2–CNTs Hybrid Nanocomposites With Durable Bi-Functional Air Electrode In High-Performance Zinc–Air Energy Storage," Applied Energy, 175 (2016) 495-504.
[20] M. Wu, G. Zhang, M. Wu, J. Prakash, and S. Sun, "Rational Design of Multifunctional Air Electrodes for Rechargeable Zn–Air Batteries: Recent Progress and Future Perspectives," Energy Storage Materials, 21 (2019) 253-286.
[21] H. Pourzolfaghar, S. Hosseini, F. M. Zuki, M. Alinejad, and Y.-Y. Li, "Recent Advancements to Mitigate Zinc Oxide Formation in Zinc-Air Batteries: A Technical Review," Materials Today Communications, 29 (2021) 102954.
[22] A. R. Mainar, O. Leonet, M. Bengoechea, I. Boyano, I. D. Meatza, A. Kvasha, A. Guerfi, J. A. Blazquez, "Alkaline Aqueous Electrolytes for Secondary Zinc-Air Batteries: An Overview," International Journal of Energy Research, 40 (2016) 1032-1049.
[23] C. Stella, N. Soundararajan, and K. Ramachandran, "Structural, Optical, and Magnetic Properties of Mn and Fe-Doped Co3O4 Nanoparticles," AIP Advances, 5 (2015) 087104.
[24] E. Pervaiz, M. Syam Azhar Virk, Z. Bingxue, C. Yin, and M. Yang, "Nitrogen Doped RGO-Co3O4 Nanograin Cookies: Highly Porous and Robust Catalyst for Removing Nitrophenol From Waste Water," Nanotechnology, 28 (2017) 385703.
[25] Y. Xu, F. Zhang, T. Sheng, T. Ye, D. Yi, Y. Yang, S. Liu, X. Wang, J. Yao, "Clarifying the Controversial Catalytic Active Sites of Co3O4 for the Oxygen Evolution Reaction," Journal of Materials Chemistry A, 7 (2019) 23191-23198.
[26] D. Han, J. Wei, Y. Zhao, Y. Shen, Y. Pan, Y. Wei, L. Mao, "Metal–Organic Framework Derived Petal-Like Co3O4@Coni2s4 Hybrid on Carbon Cloth with Enhanced Performance for Supercapacitors," Inorganic Chemistry Frontiers, 7 (2020) 1428-1436.
[27] S. Prabhakaran, J. Balamurugan, N. H. Kim, and J. H. Lee, "Hierarchical 3D Oxygenated Cobalt Molybdenum Selenide Nanosheets as Robust Trifunctional Catalyst for Water Splitting and Zinc-Air Batteries," Small, 16 (2020) 2000797.
[28] S. Jain, J. Shah, N. S. Negi, C. Sharma, and R. K. Kotnala, "Significance of Interface Barrier at Electrode of Hematite Hydroelectric Cell for Generating Ecopower by Water Splitting," International Journal of Energy Research, 43 (2019) 4743-4755.
[29] T. Hong, M. Zhao, K. Brinkman, F. Chen, and C. Xia, "Enhanced Oxygen Reduction Activity on Ruddlesden-Popper Phase Decorated La0.8Sr0.2FeO3-delta 3D Heterostructured Cathode for Solid Oxide Fuel Cells," ACS Applied Materials Interfaces, 9 (2017) 8659-8668.
[30] M. Uma, N. Balaram, P. R. Sekhar Reddy, V. Janardhanam, V. Rajagopal Reddy, H. J. Yun, S. N. Lee, C. J. Choi, "Structural, Chemical and Electrical Properties of Au/La2O3/n-GaN MIS Junction with a High-k Lanthanum Oxide Insulating Layer," Journal of Electronic Materials, 48 (2019) 4217-4225.
[31] S. Chen, B. Pan, L. Zeng, S. Luo, X. Wang, and W. Su, "La2Sn2O7 Enhanced Photocatalytic CO2 Reduction with H2O by Deposition of Au Co-catalyst," RSC Advances, 7 (2017) 14186-14191.
[32] X. Zhu, J. Dai, L. Li, Z. Wu, and S. Chen, "N,S-Codoped Hierarchical Porous Carbon Spheres Embedded with Cobalt Nanoparticles as Efficient Bifunctional Oxygen Electrocatalysts for Rechargeable Zinc-Air Batteries," Nanoscale, 11 (2019) 21302-21310.
[33] Y. Chong, Z. Pan, M. Su, X. Yang, D. Ye, and Y. Qiu, "1D/2D Hierarchical Co1-xFexO@N-doped Carbon Nanostructures for Flexible Zinc–Air Batteries," Electrochimica Acta, 363 (2020) 137264.
[34] X. Han, X. Ling, D. Yu, D. Yu, D. Xie, L. Lin, S. Peng, C. Zhong, N. Zhao, Y. Deng, W. Hu, "Atomically Dispersed Binary Co-Ni Sites in Nitrogen-Doped Hollow Carbon Nanocubes for Reversible Oxygen Reduction and Evolution," Adv Mater, 31 (2019) 1905622.
[35] B.-Q. Li, S.-Y. Zhang, B. Wang, Z.-J. Xia, C. Tang, and Q. Zhang, "A Porphyrin Covalent Organic Framework Cathode for Flexible Zn–Air Batteries," Energy & Environmental Science, 11 (2018) 1723-1729.
[36] W. Fang, P. Dai, H. Hu, T. Jiang, H. Dong, and M. Wu, "Fe0.96S/Co8FeS8 Nanoparticles Co-Embedded in Porous N, S Codoped Carbon with Enhanced Bifunctional Electrocatalystic Activities for All-Solid-State Zn-Air Batteries," Applied Surface Science, 505 (2020) 144212.
[37] Y. Liu, P. Dong, M. Li, H. Wu, C. Zhang, L. Han, Y. Zhang, "Cobalt Nanoparticles Encapsulated in Nitrogen-Doped Carbon Nanotube as Bifunctional-Catalyst for Rechargeable Zn-Air Batteries," Frontiers in Materials, 6 (2019) 85.
[38] Z. Wang, J. Ang, J. Liu, X. Y. D. Ma, J. Kong, Y. Zhang, T. Yan, X. Lu, "FeNi Alloys Encapsulated in N-doped CNTs-Tangled Porous Carbon Fibers as Highly Efficient and Durable Bifunctional Oxygen Electrocatalyst for Rechargeable Zinc-Air Battery," Applied Catalysis B: Environmental, 263 (2020) 118344.
[39] Z. Cao, H. Hu, M. Wu, K. Tang, and T. Jiang, "Planar All-Solid-State Rechargeable Zn–Air Batteries for Compact Wearable Energy Storage," Journal of Materials Chemistry A, 7 (2019) 17581-17593.

無法下載圖示 全文公開日期 2025/07/11 (校內網路)
全文公開日期 2025/07/11 (校外網路)
全文公開日期 2025/07/11 (國家圖書館:臺灣博碩士論文系統)
QR CODE