簡易檢索 / 詳目顯示

研究生: 李德道
Le Duc Dao
論文名稱: 隨機需求之稜鏡太陽能系統多目標最佳化設計
Multiple-objective optimization design of solar energy system adopting stochastic demand
指導教授: 王孔政
Kung-Jeng Wang
口試委員: 王孔政
Kung-Jeng Wang
蔣明晃
Ming-Huang Chiang (David)
羅 明琇
MING-SHIOW LO
曹譽鐘
Yu-Chung Tsao
黃忠偉
Allen Jong-Woei Whang
學位類別: 博士
Doctor
系所名稱: 管理學院 - 工業管理系
Department of Industrial Management
論文出版年: 2021
畢業學年度: 110
語文別: 英文
論文頁數: 102
中文關鍵詞: 雙層隨機最佳化光稜鏡設計非排序基因演算法太陽能
外文關鍵詞: bi-layer stochastic optimization, light prism design, non-sorting genetic algorithm, solar energy.
相關次數: 點閱:250下載:41
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 太陽能在各種再生能源中被認為是保護環境及實現持續能源最有利的選擇之一。然而,建築物和光線變化的隨機光需求增加了安裝太陽能系統和光線傳輸的困難度。本論文提出稜鏡基底太陽能聚光系統的最佳化配置模型,以收集光線並滿足照明需求。文中提出一個雙層隨機最佳化模型,模型的上層藉由協調稜鏡配置設計和光線分配,使能源供應商的利潤最大化。下層以促進用戶最小化支出。該模型採用非排序基因演算法求解,同時確定最佳的稜鏡安裝和光線傳輸路徑。本研究的貢獻和新穎性,在於對稜鏡基底太陽能聚光系統提出光線稜鏡安裝和光線輸送計畫的聯合最佳化系統設計。本模型解決了在建築物中安裝太陽能聚光系統與針對隨機光需求時安排光傳輸的困難度。


    Solar energy is considered as one of the most propitious alternatives among various renewable resources to preserve the environment and attain sustainable energy. However, Stochastic light demand in a building and sunlight variations increases the difficulties of installing a solar system and the light transmission. This dissertation proposes the optimal allocation model for solar concentrator system to collect sunlight and satisfy lighting. A bi-layer stochastic optimization model is presented where the upper layer will maximize the profit of the energy provider by coordinating the prism allocation design and sunlight assignment. The lower layer can facilitate an affordable budget for the light user to minimize the expenditure. The model is solved using a non-sorting genetic algorithm to simultaneously determine the optimal prism installation and light transmission route. The contribution and novelty of this study pivots on proposing the joint optimal system design for the solar concentrator installation and sunlight delivery plans for solar concentrator systems. The present model resolved the difficulties of installing solar concentrator systems and scheduling the light transmission against stochastic light demand in a building.

    Table of content 摘要 I Abstract II Acknowledgement III Table of content IV Content of Table VIII Content of Figure X Chapter 1: Introduction 1 1.1 Research background and motivation 1 1.2 Research contribution and outline 3 Chapter 2: Literature review 5 2.1 Location-allocation models 5 2.2 Solar concentrator system 7 2.3 Solution algorithms for energy management system 8 2.4 Research gaps and opportunities 11 Chapter 3: Two-layer stochastic modelling and solution method for solar concentrator system 12 3.1 Nature of the problem of a solar concentrator system under investigation 12 3.2 Mathematical modelling for solar concentrator system 15 3.3 Proposed solution algorithm for solar concentrator system 19 3.4 Two-layer stochastic modelling and solution method for solar concentrator system summarization 25 Chapter 4: Experiment and discussion for solar concentrator system 26 4.1 An illustration of the proposed GA of solar concentrator system 27 4.2 Sensitivity analysis for solar concentrator system 27 4.2.1 Compromised solution for firm profit maximization and user cost minimization 27 4.2.2 Impact of uncertainty 28 4.2.3 Impact of problem size 30 4.3 Experiment and discussion for solar concentrator model summarization 30 Chapter 5: Bi-layer stochastic modelling for prism-based solar concentrator system 31 5.1 Nature of the problem of prism-based solar concentrator system under investigation 31 5.2 Mathematical modelling of prism-based solar concentrator system 32 5.3 Proposed solution algorithm for prism-based solar concentrator system 36 5.4 Bi-layer stochastic modelling for prism-based solar concentrator system summarization 39 Chapter 6: Experiment and discussion for prism-based solar concentrator system 40 6.1 Case study for single objective of prism-based solar concentrator system 40 6.2 Benchmark with other solution algorithms for single objective in prism-based solar concentrator system 42 6.3 Sensitivity analysis for prism-based solar concentrator system 44 6.3.1 Light transmission rate 44 6.3.2 Light block size 46 6.3.3 Variation of light efficiency and demand 47 6.3.4 Pareto analysis of firm profit vs user cost: multiple objective solutions by NSGA II and GA-SAA 49 6.4 Experiment and discussion for prism-based concentrator system summarization 50 Chapter 7: Conclusions 51 7.1 Conclusion and research outcomes 51 7.2 Contribution of the study 51 7.3 Limitation and future research 52 Appendix 1: Light direction in the prism 54 Appendix 2: Example of data set for prism-based solar concentrator system model 55 Appendix 3: Light delivering plan for 4 scenarios by GA for prism-based solar concentrator system 56 Appendix 4: The realization of uniform GA-SAA algorithm for prism-based solar concentrator system 58 Appendix 5: An illustration the optimal firm profit given a user affordable cost for solar concentrator system 59 Appendix 6: Profit converged in different problem sizes for solar concentrator system 63 Appendix 7: Result of concentrator-based 50 scenarios 65 Appendix 8: The realization of uniform GA-SAA algorithm of solar concentrator system 76 References 77 Author’s resume 87

    References
    Abdalla, A. N., Nazir, M. S., Jiang, M., Kadhem, A. A., Wahab, N. I. A., Cao, S., & Ji, R. (2021). Metaheuristic searching genetic algorithm based reliability assessment of hybrid power generation system. Energy Exploration & Exploitation, 39(1), 488-501.
    Adam, T. (2013) How the Gigantic Mirrors Finally Bringing the wither sun to a Norwegian Town Work, https//www.businessinsider.com/rjukan-norway-how-the-mirrors-work-2013-10.
    Al-Hajj, R., Assi, A., & Fouad, M. (2021). Short-term prediction of global solar radiation energy using weather data and machine learning ensembles: A comparative study. Journal of Solar Energy Engineering, 1-38.
    Alim, M. A., Abdullah, M. Z., Aziz, M. A., Kamarudin, R., Irawan, A. P., & Siahaan, E. (2020, December). Experimental study on luminous intensity of white LEDs of different configurations. In IOP Conference Series: Materials Science and Engineering (Vol. 1007, No. 1, p. 012145). IOP Publishing.
    Alva, M., Vlachokostas, A., & Madamopoulos, N. (2020). Experimental demonstration and performance evaluation of a complex fenestration system for daylighting and thermal harvesting. Solar Energy, 197, 385-395.
    Babajide, A., & Brito, M. C. (2021). Solar PV systems to eliminate or reduce the use of diesel generators at no additional cost: A case study of Lagos, Nigeria. Renewable Energy, 172, 209-218.
    Babarinde, T. D., & Alibaba, H. Z. (2018). Achieving Visual Comfort through Solatube Daylighting Devices in Residential Buildings in Nigeria. International Journal of Scientific & Engineering Research, 9(1).
    Bechouat, M., Younsi, A., Sedraoui, M., Soui, Y., Yousfi, L., Tabet, I., & Touafek, K. (2017). Parameters identification of a photovoltaic module in a thermal system using meta-heuristic optimization methods. International Journal of Energy and Environmental Engineering, 8(4), 331-341.
    Broumi, S., Bakal, A., Talea, M., Smarandache, F., & Vladareanu, L. (2016). Applying Dijkstra algorithm for solving neutrosophic shortest path problem. 2016 International Conference on Advanced Mechatronic Systems.
    Broumi, S., Talea, M., Bakali, A., & Smarandache, F. (2016). Application of Dijkstra algorithm for solving interval valued neutrosophic shortest path problem. 2016 IEEE symposium series on computational intelligence.
    Cao, L., Xu, L., Goodman, E. D., & Li, H. (2019). Decomposition-based evolutionary dynamic multiobjective optimization using a difference model. Applied Soft Computing, 76, 473-490.
    Chaleshtori, A. E., Jahani, H., & Aghaie, A. (2020). Bi-objective optimization approach to a multi-layer location–allocation problem with jockeying. Computers & Industrial Engineering, 149, 106740.
    Chandrika, V. S., Karthick, A., Kumar, N. M., Kumar, P. M., Stalin, B., & Ravichandran, M. (2021). Experimental analysis of solar concrete collector for residential buildings. International Journal of Green Energy, 18(6), 615-623.
    Che, Z. H., Chiang, T. A., & Lin, T. T. (2021). A multi-objective genetic algorithm for assembly planning and supplier selection with capacity constraints. Applied Soft Computing, 101, 107030.
    Chen, H. Y., Whang, A. J. W., Chen, Y. Y., & Chou, C. H. (2020). The hybrid lighting system with natural light and LED for tunnel lighting. Optik, 203, 163958.
    Chen, X., Shapiro, A., & Sun, H. (2019). Convergence analysis of sample average approximation of two-stage stochastic generalized equations. SIAM Journal on Optimization, 29(1), 135-161.
    Dantzig, G. B. (2010). Linear programming under uncertainty Stochastic programming (pp. 1-11): Springe.
    Das, B. K., Hassan, R., Tushar, M. S. H., Zaman, F., Hasan, M., & Das, P. (2021). Techno-economic and environmental assessment of a hybrid renewable energy system using multi-objective genetic algorithm: A case study for remote Island in Bangladesh. Energy Conversion and Management, 230, 113823.
    De Ocampo, A. L. P., & Dadios, E. P. (2017). Energy cost optimization in irrigation system of smart farm by using genetic algorithm. Paper presented at the 2017IEEE 9th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM).
    de Vasconcelos Segundo, E. H., Mariani, V. C., & dos Santos Coelho, L. (2019). Metaheuristic inspired on owls behavior applied to heat exchangers design. Thermal Science and Engineering Progress, 14, 100431.
    Delgarm, N., Sajadi, B., Delgarm, S., & Kowsary, F. (2016). A novel approach for the simulation-based optimization of the buildings energy consumption using NSGA-II: Case study in Iran. Energy and Buildings, 127, 552-560.
    Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist xssmultiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182-197.
    Douiri, M. R. (2019). Particle swarm optimized neuro-fuzzy system for photovoltaic power forecasting model. Solar Energy, 184, 91-104.
    Durão, B., Joyce, A., & Mendes, J. F. (2014). Optimization of a seasonal storage solar system using genetic algorithms. Solar Energy, 101, 160-166.
    Eltamaly, A. M. (2021). A novel particle swarm optimization optimal control parameter determination strategy for maximum power point trackers of partially shaded photovoltaic systems. Engineering Optimization, 1-17.
    Fathollahi-Fard, A. M., Govindan, K., Hajiaghaei-Keshteli, M., & Ahmadi, A. (2019). A green home health care supply chain: New modified simulated annealing algorithms. Journal of Cleaner Production, 240, 118200.
    Fard, A. M. F., & Hajaghaei-Keshteli, M. (2018). A tri-level location-allocation model for forward/reverse supply chain. Applied Soft Computing, 62, 328-346.
    Fu, Y., Xiao, H., Lee, L. H., & Huang, M. (2021). Stochastic optimization using grey wolf optimization with optimal computing budget allocation. Applied Soft Computing, 103, 107154.
    Gao, S., Xu, X., & Yin, P. (2020). Design of a planar solar illumination system to bring natural light into the building core. Renewable Energy, 150, 1178-1186.
    Galuzio, P. P., de Vasconcelos Segundo, E. H., dos Santos Coelho, L., & Mariani, V. C. (2020). MOBOpt—multi-objective Bayesian optimization. SoftwareX, 12, 100520.
    Jurasz , J., Canales, F. A., Kies, A., Guezgouz, M., & Beluco, A. (2020). A review on the complementarity of renewable energy sources: Concept, metrics, application and future research directions. Solar Energy, 195, 703-724.
    Houssein, E. H., Gad, A. G., Hussain, K., & Suganthan, P. N. (2021). Major Advances in Particle Swarm Optimization: Theory, Analysis, and Application. Swarm and Evolutionary Computation, 63, 100868.
    Kalaiah, V. (2021). Prediction in the solar power generation based on weather forecasts using machine learning. Design Engineering, 911-916.
    Kerr, A., & Mullen, K. (2019). A comparison of genetic algorithms and simulated annealing in maximizing the thermal conductance of harmonic lattices. Computational Materials Science, 157, 31-36.
    Kabir, E., Kumar, P., Kumar, S., Adelodun, A. A., & Kim, K. H. (2018). Solar energy: Potential and future prospects. Renewable and Sustainable Energy Reviews, 82, 894-900.
    Kamjoo, A., Maheri, A., Dizqah, A. M., & Putrus, G. A. (2016). Multi-objective design under uncertainties of hybrid renewable energy system using NSGA-II and chance constrained programming. International Journal of Electrical Power & Energy systems, 74, 187-194.
    Kim, S., Pasupathy, R., & Henderson, S. G. (2015). A guide to sample average approximation. Handbook of simulation optimization, 207-243.
    Kirmani, S., Jamil, M., & Akhtar, I. (2017). Effective low cost grid-connected solar photovoltaic system to electrify the small scale industry/commercial building. International Journal of Renewable Energy Research, 7(2), 797-806.
    Kiyaee, S., Saboohi, Y., & Moshfegh, A. Z. (2021). A new designed linear Fresnel lens solar concentrator based on spectral splitting for passive cooling of solar cells. Energy Conversion and Management, 230, 113782.
    Ku, N.-L., Y.-Y. Chen, W.-C. Hsieh & A. J.-W. Whang. 2012. A cascadable circular concentrator with parallel compressed structure for increasing the energy density. ,- , 825619-825619-9.
    Kung, E., Seaton, S. E., Ramnarayan, P., & Pagel, C. (2021). Using a genetic algorithm to solve a non-linear location allocation problem for specialised children’s ambulances in England and Wales. Health Systems, 1-11.
    Lambora, A., Gupta, K., & Chopra, K. (2019, February). Genetic algorithm-A literature review. In 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon) (pp. 380-384). IEEE.
    Lan, B., Tian, Z., Niu, J., & Sun, W. (2020). Improving the design method of a solar heating system considering weather uncertainty and system reliability. Energy and Buildings, 208, 109606.
    Liu, D., Xu, Y., Wei, Q., & Liu, X. (2017). Residential energy scheduling for variable weather solar energy based on adaptive dynamic programming. IEEE/CAA Journal of Automatica Sinica, 5(1), 36-46.
    Li, B., Chen, H., & Tan, T. (2021). PV cell parameter extraction using data prediction–based meta-heuristic algorithm via extreme learning machine. Frontiers in Energy Research, 9, 211.
    Li, Y., Wang, S., Duan, X., Liu, S., Liu, J., & Hu, S. (2021). Multi-objective energy management for Atkinson cycle engine and series hybrid electric vehicle based on evolutionary NSGA-II algorithm using digital twins. Energy Conversion and Management, 230, 113788.
    Lianos, P. (2017). Review of recent trends in photoelectrocatalytic conversion of solar energy to electricity and hydrogen. Applied Catalysis B: Environmental, 210, 235-254.
    Lin, Q., Zhao, Q., & Lev, B. (2021). Influenza vaccine supply chain coordination under uncertain supply and demand. European Journal of Operational Research. in press.
    Liu, T., & Zhang, D. (2019). Multi-Objective Optimal Calculation for Integrated Local Area Energy System Based on NSGA-II Algorithm. Paper presented at the 2019 IEEE International Conference on Energy Internet (ICEI).
    Lu, F., Yao, L., Wu, K., Hu, Y., & Li, J. (2019). Design of a Reliable Location-Allocation Model under Maintenance Uncertainty for Emergency Service Network. Paper presented at the 2019 IEEE 6th International Conference on Industrial Engineering and Applications (ICIEA).
    Mahesh, A., & Sandhu, K. S. (2020). A genetic algorithm based improved optimal sizing strategy for solar-wind-battery hybrid system using energy filter algorithm. Frontiers in Energy, 14(1), 139-151.
    Maradin, D. (2021). Advantages and disadvantages of renewable energy sources utilization. International Journal of Energy Economics and Policy, 11(3), 176-183.
    MATLAB platform (2020) https://www.mathworks.com/.
    Michel, C., Blain, P., Clermont, L., Languy, F., Lenaerts, C., Fleury-Frenette, K., . . . Cloots, R. (2017). Waveguide solar concentrator design with spectrally separated light. Solar Energy, 157, 1005-1016.
    Mirino, A. E. (2017). Best routes selection using Dijkstra and Floyd-Warshall algorithm. 2017 11th International Conference on Information & Communication Technology and System.
    Morais, H., Kádár, P., Faria, P., Vale, Z. A., & Khodr, H. M. (2010). Optimal scheduling of a renewable micro-grid in an isolated load area using mixed-integer linear programming. Renewable Energy, 35(1), 151-156.
    O'Shaughnessy, E., Cutler, D., Ardani, K., & Margolis, R. (2018). Solar plus: A review of the end-user economics of solar PV integration with storage and load control in residential buildings. Applied Energy, 228, 2165-2175.
    Pierezan, J., dos Santos Coelho, L., Mariani, V. C., de Vasconcelos Segundo, E. H., & Prayogo, D. (2021). Chaotic coyote algorithm applied to truss optimization problems. Computers & Structures, 242, 106353.
    Roy, J. S., Morency, S., Dugas, G., & Messaddeq, Y. (2021). Development of an extremely concentrated solar energy delivery system using silica optical fiber bundle for deployment of solar energy: Daylighting to photocatalytic wastewater treatment. Solar Energy, 214, 93-100.
    Shahirinia, A., Tafreshi, S., Gastaj, A. H., & Moghaddomjoo, A. (2005). Optimal sizing of hybrid power system using genetic algorithm. Paper presented at the 2005 International Conference on Future Power Systems.
    Shang, K., Ishibuchi, H., He, L., & Pang, L. M. (2020). A survey on the hypervolume indicator in evolutionary multiobjective optimization. IEEE Transactions on Evolutionary Computation, 25(1), 1-20.
    Singh, S., Agrawal, S., Tiwari, A., Al-Helal, I. M., & Avasthi, D. V. (2015). Modeling and parameter optimization of hybrid single channel photovoltaic thermal module using genetic algorithms. Solar Energy, 113, 78-87.
    Srinivas N and K Deb (1995). Multi-objective optimization using nondominated sorting genetic algorithm, MIT Press, Evolutionary Computations, 2(3), 221-248.
    Teo, T. T., Logenthiran, T., Woo, W. L., Abidi, K., John, T., Wade, N. S., ... & Taylor, P. C. (2020). Optimization of Fuzzy Energy-Management System for Grid-Connected Microgrid Using NSGA-II. IEEE Transactions on Cybernetics.
    Terashima, K., Sato, H., & Ikaga, T. (2020). Development of an environmentally friendly PV/T solar panel. Solar Energy, 199, 510-520.
    Tsai, M.-C., A. J.-W. Whang & T.-X. Lee (2013) Design of a high-efficiency collection structure for daylight illumination applications. Applied Optics, 52, 8789-8794.
    Vigliassi, M. P., Massignan, J. A., Delbem, A. C. B., & London Jr, J. B. A. (2019). Multi-objective evolutionary algorithm in tables for placement of SCADA and PMU considering the concept of Pareto Frontier. International Journal of Electrical Power & Energy Systems, 106, 373-382.
    Vu, N. H., Pham, T. T., & Shin, S. (2019). Flat concentrator photovoltaic system for automotive applications. Solar Energy, 190, 246-254.
    Wang, K. J., & Dao, L. D. (2019). Resolving conflict objectives between environment impact and energy efficiency–An optimization modeling on multiple-energy deployment. Computers & Industrial Engineering, 138, 106111.
    Wang, K. J., & Dao, L. D. (2020). Multiple-objective optimization for solar concentrator layout. Journal of Solar Energy Engineering, 142(1).
    Wang, K. J., Dao, L. D & Whang, A. J. W (2021), Prism-based solar sysem optimization adopting stochastic light demands, Solar Energy, Volume 225, Pages 608-623, ISSN 0038-092X.
    Wang, K. J., Dung, N. D. T., & Whang, A. J. W. (2014). Prism-based sunlight concentrator layout: a genetic algorithm solution. Journal of Solar Energy Engineering, 136(2).
    Wang, K. J., & Lee, C.-H. (2015). A revised ant algorithm for solving location–allocation problem with risky demand in a multi-echelon supply chain network. Applied Soft Computing, 32, 311-321.
    Wang, K. J., Makond, B., & Liu, S.-Y. (2011). Location and allocation decisions in a two-echelon supply chain with stochastic demand–A genetic-algorithm based solution. Expert Systems with Applications, 38(5), 6125-6131.
    Wang, K. J., Wang, S. M., & Chen, J. C. (2008). A resource portfolio planning model using sampling-based stochastic programming and genetic algorithm. European Journal of Operational Research, 184(1), 327-340.
    Wang, Y., Zhang, S., Guan, X., Fan, J., Wang, H., & Liu, Y. (2021). Cooperation and profit allocation for two-echelon logistics pickup and delivery problems with state–space–time networks. Applied Soft Computing, 107528.
    Wang, K. J., & Yang, J. W. (2014). Sunlight concentrator design using a revised genetic algorithm. Renewable Energy, 72, 322-335.
    Weller, R. B. (2020). Beneficial effects of sunlight may account for the correlation between serum vitamin D levels and cardiovascular health. JAMA cardiology, 5(1), 109-109.
    Whang, A. J. W., Chang, C.-M., Chou, C.-H., Lin, C.-M., Chao, S.-M., Jhan, K.-C., & Wang, M. C. (2014). Innovative light-collecting module using prismatic array structures. Chinese Optics Letters, 12, 012201.
    Whang, A. J. W., Chen, Y. Y., Yang, T. H., Lin, Y. L., Tseng, W. C., & Chen, H. C. (2020). High-efficiency confocal paraboloids coupler design for natural light illumination systems. Solar Energy, 195, 129-137.
    Whang, A. J. W., Ho, Y. C., Chou, C. H., & Yen, C. J. (2014, June). Design the lighting concentrator coupler for daylight illumination. In 2014 International Conference on Advanced Robotics and Intelligent Systems (ARIS) (pp. 107-110). IEEE.
    Whang, A. J. W., Yang, T. H., Deng, Z. H., Chen, Y. Y., Tseng, W. C., & Chou, C. H. (2019). A review of daylighting system: for prototype systems performance and development. Energies, 12(15), 2863.
    Wilmot, K., Thomas, L., McGee, C., Wynne, L., Berry, F., & Ulas, E. (2019). Health Impacts of Daylight in Buildings.
    Xiao, Z., Sun, J., Shu, W., & Wang, T. (2019). Location-allocation problem of reverse logistics for end-of-life vehicles based on the measurement of carbon emissions. Computers & Industrial Engineering, 127, 169-181.
    Yağmur, E., & Kesen, S. E. (2020). A memetic algorithm for joint production and distribution scheduling with due dates. Computers & Industrial Engineering, 142, 106342.
    Yeh, S. C., Whang, A. J. W., Hsiao, H. C., Hu, X. D., & Chen, Y. Y. (2011). Distribution of emerged energy for daylight illuminate on prismatic elements. Journal of solar energy engineering, 133(2).
    Yu, W., Li, B., Jia, H., Zhang, M., & Wang, D. (2015). Application of multi-objective genetic algorithm to optimize energy efficiency and thermal comfort in building design. Energy and Buildings, 88, 135-143.
    Zakaria, A., Ismail, F. B., Lipu, M. H., & Hannan, M. A. (2020). Uncertainty models for stochastic optimization in renewable energy applications. Renewable Energy, 145, 1543-1571.
    Zdražil, L., Kalytchuk, S., Holá, K., Petr, M., Zmeškal, O., Kment, Š., Zbořil, R. (2020). A carbon dot-based tandem luminescent solar concentrator. Nanoscale, 12(12), 6664-6672.
    Zhang, C., & Yang, T. (2021). Optimal maintenance planning and resource allocation for wind farms based on non-dominated sorting genetic algorithm-ΙΙ. Renewable Energy, 164, 1540-1549.
    Zhang, J.-d., Feng, Y.-j., Shi, F.-f., Wang, G., Ma, B., Li, R.-s., & Jia, X.-y. (2016). Vehicle routing in urban areas based on the oil consumption weight-Dijkstra algorithm. IET Intelligent Transport Systems, 10(7), 495-502.
    Zhang, X., & Ng, Eddie, YK, NG . (2021). Evaluation of window glasses transmission and sunlight guiding system in a solar-based vertical greenhouse. Carpathian Journal of Food Science & Technology, 13(1).

    QR CODE