簡易檢索 / 詳目顯示

研究生: 賴東陽
Dong-Yang Lai
論文名稱: 基於影像偵測方法之三維足部雷射掃描系統校正
System calibration of 3D foot laser scanning devices based on image detection method
指導教授: 林宗翰
Tzung-han Lin
口試委員: 陳建宇
Chien-Yu Chen
孫沛立
Pei-Li Sun
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 色彩與照明科技研究所
Graduate Institute of Color and Illumination Technology
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 57
中文關鍵詞: 足部3D掃描器雷射掃描相機校正
外文關鍵詞: Foot 3D scanner, laser scanner, camera calibration
相關次數: 點閱:287下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

現代人對於身體健康與生活舒適度的要求日益提升,尤其每天皆會穿著的鞋子對於一個人的影響甚鉅。然而多數人對於本身足部的形狀與尺寸了解不多,即便經過店員推薦並試穿過,還是時常發生購買到不合身的鞋子。因此有一套非接觸式的掃描器可以擷取足部資訊以便進一步分析是有其必要性。
一套掃描器必須透過相機校正來換算出3D模型並保持整體系統的精度。以往在相機校正領域常見的方式是藉由多張棋盤格影像來進行相機內外部參數校正,也有利用建立一個參照表的查表法。然而多數的方法都需要有一定相關專業知識才有辦法進行操作。因此本研究目的為開發一套適合一般大眾能夠使用的應用於三維足部掃描器的校正方法。
在驗證本研究所提出的校正方法精度上,利用校正後得到的相機外部參數與真實3D點回推2D點座標做誤差分析,距離誤差約為2 Pixel。在驗證重建精度上利用直徑65.5 mm的標準撞球,標準偏差約為0.6 mm。在資料重現性上,同位置多次掃描的標準偏差約為0.1 mm。從以上實驗結果驗證了此論文提出的校正方法的可行性。


Modern people's demands for physical health and comfort are increasing, particularly for shoes. It has a great impact for people who wear shoes every day. However, most people don't know much about the shape and size of their feet. Even following the recommendation of clerks and trying on, the shoes often do not fit after purchasement. Therefore, it is necessary to have a non-contact scanner that can capture foot information for further analysis.
A scanner always needs calibration to calculate the 3D model and maintain the accuracy of itself. In the past, the common method of camera calibration is to perform camera internal and external parameter correction by using multiple checkerboard images or using the look-up table method to establish a reference table. However, most methods require relevant expertise to operate. The purpose of this study is to develop a calibration method for a three-dimensional foot scanner that would be suitable for the general public.
In verifying the accuracy of our proposed calibration method, we analyzed the error by comparison with estimated 2D points and the known 2D points. The re-projection error of our system is about 2 pixels. To verify the reconstruction accuracy, a standard billiard ball with a diameter of 65.5 mm is used. The standard deviation is approximately 0.6 mm.
In terms of data repeatability, the standard deviation of multiple scans at the same location is approximately 0.1 mm. The feasibility of the calibration method proposed in this paper is verified from the above experimental results.

摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 表目錄 VIII 第 一 章 緒論 1 1.1 研究背景 1 1.2 研究動機 2 1.3 研究目的 2 第 二 章 文獻探討 3 2.1 鞋子製程 3 2.1.1 製鞋流程 3 2.1.2 不同材質鞋楦的差異 5 2.1.3 鞋楦上的重要維度 6 2.2 三維掃描技術 7 2.2.1 接觸式掃描 7 2.2.2 非接觸式掃描 7 2.3 相機校正相關論文 7 2.4 足部掃描器相關論文 10 第 三 章 研究方法 12 3.1 實驗架設 12 3.2 實驗流程概述 16 3.3 相機校正 17 3.3.1 相機內部參數校正 17 3.3.2 影像變形參數校正 18 3.4 系統校正 19 3.4.1 相機外部參數校正 20 3.4.2 雷射平面校正 23 3.5 校正參數之間的關係 28 3.6 掃描流程 29 第 四 章 實驗結果與分析 32 4.1 各台相機掃描誤差分析 32 4.2 相機外部參數分析 35 4.3 重複性 37 4.4 位置差異 38 4.5 實體足部掃描可行性評估 41 第 五 章 結論 44 參考文獻 45

[1] M. Wade, How Shoes are Made, CreateSpace Independent Publishing Platform, 2015.
[2] L. Li, “Time-of-Flight camera–An introduction,” Texas Instruments - Tech. White Pap., pp. 10, 2014.
[3] P. Beardsley and D. Murray, “Camera calibration using vanishing points,” Proc. 1992 Br. Mach. Vis. Conf. BMVC, pp. 416–425, 1992.
[4] B. W. He and Y. F. Li, “Camera calibration from vanishing points in a vision system,” Opt. Laser Technol., vol. 40, no. 3, pp. 555–561, 2008.
[5] J. a. Shufelt, “Performance evaluation and analysis of vanishing point detection techniques,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 21, no. 3, pp. 1–6, 1999.
[6] Z. Zhang, “A flexible new technique for camera calibration,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 22, no. 11, pp. 1330–1334, 2002.
[7] Z. Zhang, “Camera calibration with one-dimensional objects,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 26, no. 7, pp. 892–899, 2004.
[8] J. Santolaria, J. J. Pastor, F. J. Brosed, and J. J. Aguilar, “A one-step intrinsic and extrinsic calibration method for laser line scanner operation in coordinate measuring machines,” Meas. Sci. Technol., vol. 20, no. 4, 2009.
[9] G. Xu, Z. Hao, X. Li, J. Su, H. Liu, and L. Sun, “An optimization solution of a laser plane in vision measurement with the distance object between global origin and calibration points,” Sci. Rep. 5, pp. 11928, 2015. doi:10.1038/srep11928.
[10] Z. Liu, X. Li, and Y. Yin, “On-site calibration of line-structured light vision sensor in complex light environments,” Optical Express, vol. 23, no. 23, pp. 29896, 2015.
[11] Y. I. Abdel-Aziz and H. M. Karara, “Direct linear transformation from comparator coordinates into object space coordinates in close-range photogrammetry,” Photogramm. Eng. Remote Sens., vol. 81, no. 2, pp. 103–107, 2015.
[12] G. Li, Y. Liu, L. Dong, X. Cai, and D. Zhou, “An algorithm for extrinsic parameters calibration of a camera and a laser range finder using line features,” IEEE Int. Conf. Intell. Robot. Syst., pp. 3854–3859, 2007.
[13] G. Xu, X. Zhang, J. Su, X. Ji and A. Zheng, “Solution approach of a laser plane based on Plücker matrices of the projective lines on a flexible 2D target,” Applied Optics, vol. 55, no. 10, pp. 1–4, 2016.
[14] 呂東武,「足墊製作用足底取模方法之簡介」,代步與休閒產業雙月刊,第42卷,頁8-15,2008。
[15] C. E. Dombroski, M. E. Balsdon, and A. Froats, “The use of a low cost 3D scanning and printing tool in the manufacture of custom-made foot orthoses: a preliminary study,” BMC research notes, vol. 7, no. 1, pp. 443, 2014.
[16] M. Carroll, M.-E. Annabell, and K. Rome, “Reliability of capturing foot parameters using digital scanning and the neutral suspension casting technique,” Journal of Foot and Ankle Research, vol. 4, no. 1, pp. 9, 2011.
[17] C. Payne, “Cost benefit comparison of plaster casts and optical scans of the foot for the manufacture of foot orthoses,” Australasian Journal of Podiatric Medicine, vol. 41, no. 2, pp. 29-31, 2007.
[18] Y. C. Lee, G. Lin, and M. J. J. Wang, “Comparing 3D foot scanning with conventional measurement methods,” J. Foot Ankle Res., vol. 7, no. 1, 2014.
[19] M. Kimura, M. Mochimaru, and T. Kanade, “Measurement of 3D foot shape deformation in motion,” in Proceedings of the 5th ACM/IEEE International Workshop on Projector camera systems, pp. 10:1-8, 2008.
[20] M. JezerĹĄek and J. MoĹžina, “High-speed measurement of foot shape based on multiple-laser-plane triangulation,” Optical Engineering, vol. 48, no. 11, pp. 113604:1- 8, 2009.
[21] 黃霨,「3D足型掃描器開發」,國立台灣科技大學碩士論文,2017。
[22] Point Grey Research Inc, Firefly MV Technical Reference Manual, 2011.
[23] F. David and P. Jean, Computer Vision-A Modern approach, Pearson. 2012.
[24] G. Bradski and A. Kaehler, Learning OpenCV, O’Reilly Media, 2008.
[25] H. Richard and Z. Andrew, Multiple View Geometry in Computer Vision, Cambridge. 2004.
[26] R. B. Fisher and D. K. Naidu, “A comparison of algorithms for subpixel peak detection,” Image Technol. Adv. Image Process. Multimed. Mach. Vision, pp. 385–404, 1996.
[27] M. Xu and J. Lu, “Distributed RANSAC for the robust estimation of three-dimensional reconstruction,” IET Comput. Vision, vol. 6, no. 4, pp. 324-333, 2012.

QR CODE