簡易檢索 / 詳目顯示

研究生: 黃昱菘
Yu-Song Haung
論文名稱: 氣壓式電磁閥之動態流場模擬分析
Dynamic Flowfield Analysis of a Pneumatic Solenoid Valve
指導教授: 林顯群
Sheam-Chyun Lin
口試委員: 林顯群
Sheam-Chyun Lin
楊旭光
Shiuh-Kuang Yang
陳呈芳
Cheng Fang Chen
向四海
Su-Hai Hsiang
郭振華
Jhen Hua Guo
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 189
中文關鍵詞: 氣壓式電磁閥動網格高壓氣體壓力振盪現象暫態模擬
外文關鍵詞: Pneumatic Solenoid Valve, Dynamic mesh, High-Pressure Fluid, Pressure-Oscillation Phenomenon, Transient Characteristics
相關次數: 點閱:326下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

當汽車行駛中發生緊急情況,必須踩煞車減緩車輛速度時,若將煞車立即踩到底易使車輪卡死,此時若車輛有裝載ABS系統便能以近似頻率式的踩放煞車限制煞車的強度,避免車輪卡死導致駕駛無法操控方向反而使車輛煞車距離增加;ABS系統中運用了氣壓式電磁閥控制煞車強度,因此電磁閥的反應靈敏度便極為重要,若能更快速地充放氣,便能以更高的頻率進行煞車控制;電磁閥之壓力上升時間(ts75%)最為關鍵,其是否符合國際 Tier1車廠規範,以及與後續相關種類電磁閥性能比較皆以此做基準。因此本文採用三口二位氣壓式電磁閥為研究對象,並且使用了考量鐵芯移動之動態模擬,其壓力上升時間(ts75%)與實驗數據961 ms之誤差值為8.9 %,而以往固定鐵芯位置752 ms之模擬誤差值為21.7 %;固定鐵芯位置之模擬方式並未考量鐵芯移動過程所影響之物理現象,並且使用了理想氣體進行模擬;而在考量鐵芯移動之動態模擬中,運用了真實氣體進行模擬,能分析更多流場細節以及獲得更正確的壓力上升時間,因此後者之準確度提升許多。經由探討原始電磁閥之壓力、質量流率、馬赫數、以及流場圖後,發現入口噴嘴至鐵芯頂部有壓力振盪現象,此現象影響高壓氣體流入閥體以及氣體流速,而壓力上升時間(ts75%)為875.6 ms;原始鐵芯移動速度為0.133 m/s,將鐵芯移動速度加快(0.166 m/s)時,壓力振盪現象更為嚴重且氣體流速更快,此時壓力上升時間(ts75%)變長至1,040 ms;將鐵芯移動速度減慢(0.100 m/s),壓力振盪現象減少但是壓力上升時間(ts75%)變長至1,044 ms,不論加快或減慢鐵芯移動速度(0.166 m/s 和 0.100 m/s)均為變差,此現象或許是因為將鐵芯移動速度做過大地改變,必須做細部調整才能找出最佳之鐵芯移動速度。


This research presents an unsteady simulation of CFD effort to realize and estimate the pressure-rising characteristics of a 3/2-way pneumatic solenoid valve, which is used extensively in activating the anti-lock braking system (ABS). The actual pressure-rising action of solenoid valve is accomplished by executing the armature-moving process and the pressure-filling process. At first, the open mode of solenoid valve in ABS is reached by moving the armature to its lowest position, which can block the ventilating holes and the flow leakage completely. Also, a space between the armature and the nozzle is created for allowing the high-pressure air to fill the valve system, which has been reported in previous literatures. Clearly, the course of armature movement is an extremely quick transient process and forms a time-consuming and problematic CFD challenge, which is thus ignored usually. However, the flow pattern at the end of armature movement is the initial condition for activating the actual pressure-charging process. Therefore, this work intends to firstly perform the transient simulation on the armature-moving process to understand the physical phenomenon in details and obtain the correct initial condition for the succeeding pressure-filling process. In addition, the real-gas relation is implemented in all numerical calculations executed here to ensure the accurate and reliable numerical results.
As a result, the transient flow analysis on the entire pressure-charging action indicates that a repeating pressure-oscillation phenomenon exists inside the region between the iron core and the nozzle exit at the original armature speed (0.133 m/s). From the numerical flow visualization, it is found that this fluctuation is contributed to the cyclic resistance on the incoming air mainly generated by the large flow circulation existed between the iron core and the nozzle exit, in which a rapid and huge volume change is induced by the moving armature. Also, the amplitude of pressure perturbation diminishes quickly after six fluctuating cycles since the volume-variation effect becomes smaller as the armature moves away from the nozzle. As regard to the pressure-responding estimation of this solenoid valve, CFD calculations show that 876 ms and 752 ms are needed to reach 75% of the activation pressure from present and old approaches, respectively. Apparently, the deviation percentage is significantly improved from 21.7% to 8.9% based on the actual test data (961 ms).
Furthermore, it is demonstrated that the moving speed of armature has significant influence on the pressure-fluctuation phenomenon and the resulting pressure-rise time needed for this ABS valve. Thus, the unsteady analysis on different armature speeds (0.100 m/s and 0.166 m/s) is carried out to find its corresponding pressure responding time of this valve. The numerical calculations indicate that cycle number and perturbed amplitude of the pressure fluctuation increase for a higher armature speed while no improvement on the responding time is observed. Besides, this result implies that the moving velocity of armature is an important design factor, which can be optimized systematically with the aids of CFD tool. In conclusion, this investigation successfully establishes a rigorous and systematic CFD scheme to reveal the physical mechanism in details and accurately estimate the pressure-rise characteristics of a 3/2-way pneumatic solenoid valve.

目錄 摘要 II ABSTRACT IV 致謝 VII 目錄 VIII 圖索引 XII 表索引 XVII 符號索引 XVIII 第一章 緒論 1 1.1前言 1 1.2文獻回顧 2 1.3研究動機與目的 12 1.4研究流程 16 第二章 ABS剎車系統簡介 20 2.1煞車系統基本理論 20 2.2 ABS系統 25 2.2.1 內部元件 26 2.2.2系統分類 28 第三章 物理模型 32 3.1電磁閥物理模型介紹 34 3.2鐵芯作動方法與模型狀態定義 37 3.3模型之網格建構 39 第四章 數值方法 47 4.1統御方程式與紊流模型 47 4.1.1統御方程式 48 4.1.2紊流模式 50 4.2數值計算方法 54 4.2.1 數值求解流程 54 4.2.2 離散化方程式 56 4.2.3上風差分法 57 4.2.4速度與壓力耦合 59 4.2.5 Aungier-Redlich-Kwong 狀態方程式 61 第五章 原始電磁閥於鐵芯向下移動之模擬分析 64 5.1 技術指標定義和邊界條件設定 64 5.2 鐵芯移動向下階段 67 5.2.1 壓力與質量流率之分析 67 5.2.2 馬赫數討論 75 5.2.3 流場分析 79 5.3 常開狀態 84 5.3.1 壓力與質量流率之分析 86 5.3.2 馬赫數討論 89 5.3.3 流場分析 92 5.4 不同模擬方式之比較 96 第六章 不同電磁閥於鐵芯向下移動之模擬分析 100 6.1 增加鐵芯移動向下之速度 101 6.1.1 壓力與質量流率分析 101 6.1.2 流場分析 110 6.2 增加鐵芯移動速度之常開狀態 112 6.2.1 壓力與質量流率之分析 115 6.2.2 馬赫數與流場分析 122 6.3 減少鐵芯移動向下之速度 125 6.3.1 壓力與質量流率之分析 125 6.3.2 流場分析 133 6.4減少鐵芯移動速度之常開狀態 137 6.4.1 壓力與質量流率之分析 137 6.4.2 馬赫數與流場分析 140 第七章 結論與建議 151 7.1結論 151 7.1.1原始電磁閥之動態流場分析 151 7.1.2改變鐵芯之移動速度 153 7.2建議 155 7.2.1新增考慮因素 155 7.2.2未來方向 157 參考文獻 161

參考文獻
[1] 左成基,楊明欽,“自動變速箱”,全華圖書股份有限公司,2009年
[2] 趙志勇,楊成宗,“汽車煞車系統-ABS理論與實際”,全華科技圖書股份有限公司,2005年。
[3] 黃欽正,“氣液壓工程”,全華圖書股份有限公司,2017年
[4] Y. Kawase and Y. Ohdachi, “Dynamic Analysis of Automotive Solenoid Valve Using Finite Element Method,” in IEEE Transactions on Magnetics, Vol. 27, No. 5, pp. 3,939-3,942, 1991.
[5] V. Szente and J. Vad, “Computational and Experimental Investigation on Solenoid Valve Dynamics,” IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Vol.1, pp. 618-623, 2001
[6] L. Chu, Y. Hou, M. Liu, J. Li, Y. Gao and M. Ehsani, “Study on the Dynamic Characteristics of Pneumatic ABS Solenoid Valve for Commercial Vehicle,” IEEE Vehicle Power and Propulsion Conference, pp. 641-644, 2007.
[7] Hyung Jin Sung, Hyun Chul Kim, and Hyun Woo Lee, “Flow Force Analysis of a Variable Force Solenoid Valve for Automatic Transmissions,” journal of fluids engineering, Vol. 132, No. 3, Article Number: 031103 , 2010
[8] M. Branciforte, A. Meli, G. Muscato, Senior Member, IEEE, and D.Porto, “ANN and Non-Integer Order Modeling of ABS Solenoid Valves,” IEEE Transactions on control Systems Technology, Vol. 19, No. 3, pp. 628-635, 2011.
[9] Rong Li, Yong-Bao Feng, and Jie Liu, An Zhang, and Xi-Kang Li, “Three Dimensional Simulation and Analysis of Inner Flow Field for Solenoid Valve Based on Fluent,” 液壓與氣動, 第25卷, 第10期, 2013, 第 96-99頁
[10] P. Lino, G. Maione, F. Saponaro, J. Deng and K. Li, “Identification of Solenoid Valve Dynamics in a Variable Valve Timing System,” International Conference on Control, pp. 1-6, 2016
[11] 耿啟育,“氣壓電磁閥之數學建模與分析”,國立屏東科技大學車輛工程系碩士論文,2017年
[12] Shiyang Li, Peng Wua, Linlin Cao, Dazhuan Wua, and Yantao She, “CFD Simulation of Dynamic Characteristics of a Solenoid Valve for Exhaust Gas Turbocharger System,” Applied Thermal Engineering, Vol.110, pp. 213–222, 2017
[13] 林郁民,“三口二位電磁閥之流場模擬分析”,國立台灣科技大學機械工程學系碩士論文,2017年
[14] 交通部統計查詢網,機動車輛登記數,https://stat.motc.gov.tw/mocdb/stmain.jsp?sys=100
[15] Ansys Fluent User’s Guide-14.5, ANSYS Inc., 2012.
[16] B. E. Launder and D. B. Spalding, “Lectures in Mathematical Models of Turbulence,” Academic Press, London, England, 1972.
[17] S. V. Patankar, and D. B. Spalding, “A Calculation Procedure for Heat Mass and Momentum Transfer in Three-Dimensional Parabolic Flows,” International Journal of Heat Mass Transfer, Vol. 15, pp. 1787-1806, 1972.
[18] O.Redlich, and J.N.S.Kwong, “On the Thermodynamics of Solutions. V. An Equation of State. Fugacities of Gaseous Solutions,” Chemical Reviews, Vol. 44, pp. 233-244, 1949.
[19] R.H.Aungier, “A Fast, Accurate Real Gas Equation of State for Fluid Dynamic Analysis Applications,” Journal of Fluids Engineering, Vol. 117, pp. 277-281, 1995.
[20] James E.A.John “Gas Dynamics,” Pearson Prentice Hall, 2006

無法下載圖示 全文公開日期 2021/08/29 (校內網路)
全文公開日期 2028/08/29 (校外網路)
全文公開日期 2028/08/29 (國家圖書館:臺灣博碩士論文系統)
QR CODE