簡易檢索 / 詳目顯示

研究生: 周宇正
Yu-Cheng Chou
論文名稱: 1.0碳過共析鋼內spinodal相分離與有序化相變化的研究
The study of spinodal decomposition and ordering reaction in a hyper-eutectoid steel with a 1.0 wt% carbon content
指導教授: 鄭偉鈞
Wei-Chun Cheng
口試委員: 王朝正
Chaur-Jeng Wang
顏鴻威
Hung-Wei Yen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 102
中文關鍵詞: 碳鋼spinodal相分離有序化相變化
外文關鍵詞: carbon steel, spinodal decomposition, ordering reaction
相關次數: 點閱:195下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高碳鋼經適當熱處理後,具有高的強度、硬度、彈性極限與疲勞極限,適合運用於工具鋼。本論文研究含1.0碳(wt.%)商用高碳鋼經熱處理後的相變化情形,熱處理方式為加熱至1000℃後,以爐冷、空冷、水淬與淬入液態氮方式冷卻,以及後續的低溫恆溫處理。由磁熱重分析儀(M-TGA)的分析,發現經由不同熱處理的高碳鋼,得到相似的熱重溫度變化曲線:皆於485℃有磁重增加的現象。利用同步輻射臨場加熱方式的分析,亦發現於485℃附近有相變化的產生;因此推斷這些經不同熱處理的高碳鋼於485℃附近是發生類似的相變化。經由穿透式電子顯微鏡分析經過不同熱處理的高碳鋼內發生的相變化情形,推論當肥粒體(α)於冷卻過程生成後,肥粒體會先經由spinodal相分離而相轉變成低溫無碳肥粒體(α’)與含碳肥粒體(α”),其反應式表示如下:α→α’+α”;當冷卻溫度低於485℃以下時,含碳之α”相接續發生有序化反應,含碳α”相會經由有序化反應而轉變為新析出相,反應式為α”→新析出相。故於冷卻過程中,當肥粒體相形成後的總反應式如下:α→α’+α”→α’+ 新析出相。由於快速冷卻的高碳鋼內生成的新析出相的含碳量是遠高於緩慢冷卻的高碳鋼內生成的新析出相,我們亦將其表示為新析出相’。


    High carbon steel has high strength, hardness, elastic limit and fatigue limit after proper heat treatment, and is suitable for tool steel. Phase transformations play an important role on the high carbon steel. We have studied the phase transformations of a high-carbon steel with 1.0 wt.% C. The methodology for the processes of the steel includes heating the steel samples to high temperature, 1000℃, and cooling to room temperature via furnace cooling, air cooling, water quenching and liquid nitrogen quenching. We have discovered similar curves showing significant magnetic weight gain at the vicinity of 485℃from the M-TGA measurement for the steel with different heat treatment. We have also found specific phase transformation occurring at temperature near 485℃ by applying the synchrotron radiation with in-situ heating. After examination of the phase transformations of the steel after various heat treatment by TEM, we have concluded that ferrite phase has undergone unknown phase transformations during cooling. Upon cooling from high temperature, ferrite has undergone the spinodal decomposition and decomposes into two other low temperature ferrite phases. One is carbon-free ferrite (α’), and the other is carbon-contained ferrite (α”). The spinodal decomposition is as follows. α→α’+α”.The ordering reaction occurs at temperature below 485°C and the ” phase transforms into new precipitate, i.e. α” → new precipitate. The overall reactions occur in the ferrite during cooling are as follow. α→α’+α”→α’ + new precipitate

    目 錄 第一章 簡 介 1 第二章 文獻回顧 5 2.1擴散型相變化(diffusional transformation) 6 2.2非擴散型相變化(diffusionless transformation) 10 2.3鋼鐵的組成與相變化 14 第三章 實驗方法 32 3.1 碳鋼熱處理 32 3.2 試片製備 33 3.3 儀器分析 37 第四章 結果與討論 49 4.1 磁熱重變化 49 4.2 經緩慢冷卻的相變化 51 4.3 快速冷卻相變化 55 第五章 結 論 85 參考資料 88

    1. D.A. Porter, K.E. Easterling, Phase Transformations in Metals and Alloys”, 3rd ed., (2008).
    2. 李勝隆,”熱處理金屬材料原理與應用”,全華圖書股份有限公司(2014)。
    3. D.E. Laughlin, Acta Metall., 23, 329 (1975).
    4. W.A. Soffa, D.E. Laughlin, Prog. Mat. Sci., 49, 347 (2004).
    5. K. Sato, K. Tagawaand, Y. Inoue, Scripta Metall., 22, 899 (1988).
    6. K. Sato, K. Tagawaand, Y. Inoue, Mater. Sci. Eng. A, 111, 45 (1989)
    7. K. Sato, K. Tagawa, Y. Inoue, Metall. Trans. A, 21, 5 (1990).
    8. Y.G. Kim, Y.S. Park, J.K. Han, Metall. Trans. A, 16, 1689 (1985).
    9. K.H. Han, Mater. Sci. Eng. A, 197, 223 (1995).
    10. W.K. Choo, J.H. Kim, J.C. Yoon, Acta Mater., 45, 4877 (1997)
    11. M.C. Li, H. Chand, P.W. Kao, D. Gan, Mater. Chem. Phys., 59, 96 (1999).
    12. C.S. Wang, C.N. Hwang, C.G. Chao, T.F. Liu, Scripta Mater., 57, 809 (2007).
    13. W.A. Soffa, D.E. Laughlin, Acta Metall., 37, 3019 (1989).
    14. R. Oshima, C.M. Wayman, Metall. Trans., 3, 2163 (1972).
    15. R.E. Reed-Hill, Physical Metallurgy Principle, 3rd ed., (1992).
    16. G.E. Dieter, Mechanical Metallurgy, 132 (1988).
    17. K.H. Hwang, C.M. Wan, J.G. Byrne, Mat. Sci. Eng. A, 132, 161 (1991).
    18. Z. Nishiyama, Martensitic Transformation, Academic Press (1978).
    19. 崔占全、王昆林、吳潤,金屬學與熱處理,北京大學出版社,236 (2010)。
    20. L. Cheng, X.L. Wan, K.M. Wu, Mater. Char., 61, 192 (2010).
    21. K.H. Kuo, C.L. JIA, Acta Metall., 33 (6), 991 (1985).
    22. J. Janovec, M. Svoboda, A. Vyrostkova, A. Kroupa, Mater. Sci. Eng., A, 402, 288 (2005).
    23. D.H. Huang, G. Thomas,Met. Trans., 8A, 1661, (1977).
    24. Y.A. Bagaryatskii, Dokl Akad Nauk SSSR, 73, 1161 (1950).
    25. T.F. Liu, J.C. Tasy, Scripta Metall., 21, 1213 (1987).
    26. D.N. Shackleton, P.M. Kelly, Acta Metall., 15, 979 (1967).
    27. G. Spanos, H.I. Aaronson, Scripta Metall., 22, 1537 (1988).
    28. C.R. Hutchinson, R.E. Hackenberg, G.J. Shiflet, Acta Mater., 52, 3565 (2004).
    29. 林郁珊,“以方位影像顯微學分析鐵錳鋁合金內沃斯田體晶粒的麻田散體相變化”,國立台灣科技大學,碩士論文 (2014)。
    30. 羅翊洋,“鐵-13鎵合金之磁彈性與機械性質研究”,國立台灣科技大學,碩士論文 (2014)。
    31. E. Robert, Physical Metallurgy Principles, 3rd ed,. (2002).
    32. A.G. Crocker, J. De Phys. Colloque C4, 43, 209 (1982).
    33. 近角聰信,(張煦、李學養譯),“磁性物理學”,聯經出版事業公司 (1982)。
    34. W.F. Smith,(李春穎、許煙明、陳忠仁譯),“材料科學與工程”高麗圖書有限公司 (1994).
    35. 金重勳,磁性技術手冊,中華民國磁性技術協會出版 (2002).
    36. Y.J. Hu, J. Li, K.A. Darling, W.Y. Wang, B.K. Vanleeuwen, X.L. Liu, L.J. Kecskes, E.C. Dickey, Z.K. Liu, Sci Rep., 5, 11772, (2015).
    37. C.N. Hulme-Smith, I. Lonardelli, A.C. Dippel, H.K.D.H. Bhadeshia, Scripta Metall., 69, 409, (2013).
    38. J.H. Jang, H.K.D.H. Bhadeshia, D.W. Suh, Scripta Metall., 68, 195, (2013).
    39. J.Y. Yan, A.V. Ruban, Comput. Mater. Sci, 147, 293, (2018).

    QR CODE