簡易檢索 / 詳目顯示

研究生: 游少甫
Shao-fu Yu
論文名稱: 以矽基材製備微型氫氣燃料電池
Fabrication of a silicon-based hydrogen micro-fuel cell
指導教授: 李嘉平
Chia-Pyng Lee
口試委員: 林忠永
Chung-Yung Lin
王孟菊
Meng-Jiy Wang
謝明燈
Ming-Deng Hsieh
劉志建
Chih-Chien Liu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 85
中文關鍵詞: 雙極板矽基材
外文關鍵詞: silicon substrate, bipolar plate
相關次數: 點閱:141下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本實驗利用微影製程與薄膜濺鍍製程成功地製作出以矽基材作為雙極板的微型燃料電池,並針對氧氣流量、氫氣流量和操作溫度的改變來探討對電池性能的影響。
在矽基材的蝕刻方面,本實驗成功地以濕式蝕刻法製作出微型的雙極板。雙極板實際尺寸為長3公分、寬2公分,流道線寬為1釐米,而雙極板上流場的有效面積為1.42 cm2。在沉積金屬膜的部分,實驗中以四點探針法量出銅膜的電阻率,並以最低電阻率的實驗參數來沉積銅膜,希望能降低整個電池的總電阻。在電池性能部分,氧氣流量為50 sccm時有較佳的性能;氫氣流量為225 sccm時有較好的性能;在50、65、80 oC三個不同操作溫度下所得到的結果是操作溫度為65 oC時有最好的性能,在此條件下其最大功率密度為55.9 mW/cm2。


Silicon bipolar plates can be successfully fabricated by using lithography process and sputtering technique in this experiment. The cell performance was investigated by varying oxygen flow rate, hydrogen flow rate and cell operation temperature.

Wet-etching was successfully used to fabricate micro-bipolar plates in this experiment. The length of bipolar plates is 3 cm and the width is 2 cm.The flow channel width is 1 mm and the active area is 1.42 cm2.The resistivity of copper film was measured by Four-Point Probe method and deposition parameters which the leaded to the lowest copper film resistivity was chosen to deposit copper film.The 50 sccm oxygen flow rate and the 225 sccm hydrogen flow rate had the best cell performance.By varying operation temperature from 50 to 80 oC, the cell had the best performance at the 65 oC and its maximum power density was 55.9 mW/cm2.

目 錄 中文摘要 I 英文摘要 II 誌謝 III 目錄 V 圖索引 VII 表索引 X 第一章 序論 1 第二章 燃料電池概論 4 2.1 燃料電池簡介 4 2.2 燃料電池運作原理 9 2.3 燃料電池之特點 10 2.4 燃料電池的種類 12 2.5 質子交換膜燃料電池的架構 16 2.6 文獻回顧 19 第三章 微型氫氣燃料電池之設計與製備方法 23 3.1 實驗目標 23 3.2 實驗藥品及材料 24 3.3 實驗設備與分析儀器 26 3.4 雙極板之製作 36 3.4.1 雙極板流道之設計 36 3.4.2 微影製程應用於流道之製作 38 3.4.3 磁控濺鍍之原理 42 第四章 結果與討論 46 4.1 矽基材雙極板之蝕刻 46 4.2 雙極板導電層之濺鍍 52 4.3 膜電極組之熱壓 65 4.4 性能測試分析 68 4.4.1 燃料電池之極化現象 69 4.4.2 改變氧氣流量對電池性能之影響 72 4.4.3 改變氫氣流量對電池性能之影響 75 4.4.4 改變操作溫度對電池性能之影響 78 第五章 結論 81 參考文獻 83

1. 林昇佃、余子隆、張幼珍, “質子交換膜燃料電池-膜電極組關鍵元件技術研發與突破”, 化工技術第12卷第8期, (2004) 141-156.

2. F. N. Buchi, G. G. Scherer, “In-situ Resistance Measurements of Nafion 117 Membranes in Polymer Electrolyte Fuel Cell”, Journal of Electroanalytical Chemistry, 404 (1996) 37-43.

3. A. V. Anantaramon, C. L. Gardner, “Studies on Ion-Exchange Membranes. Part 1 Effect of Humidity on the Conductivity of Nafion”, Journal of Electroanalytical Chemistry, 404 (1996) 115-120.

4. O. J. Murphy, A. Cisar, and E. Clarke, “Low-cost Light Weight High Power Density PEM Fuel Cell Stack”, Electrochimica Acta, 43 (1998) 3829-3840.

5. P. L. Hentall, J. B. Lakeman, G. O. Mepsted, P. L. Adcock, and J. H. Moore, “New materials for Polymer Electrolyte Membrane Fuel Cell Current Collectors”, Journal of power sources, 80 (1999) 235-241.

6. K. H. Choi, D. H. Peck, C. S. Kim, D. R. Shim, and T. H. Lee, “Water Transport in Polymer Membranes for PEMFC ”, Journal of power sources, 86 (2000) 197-201.

7. S. C. Kelley, G. A. Deluga, and W. H. Smyrl, “A Miniature Methanol/Air Polymer Electrolyte Fuel Cell”, Electrochemical and Solid-State Letters, 3 (2000) 407-409.

8. S. Gamburzev, A. J. Appleby, “Recent Progress in Performance
Improvement of the Proton Exchange Membrane Fuel Cell(PEMFC) ”, Journal of power sources, 107 (2002) 5-12.

9. J. P. Meyers, H. L. Maynard, “Design Considerations for Miniaturized PEM Fuel Cell ”, Journal of power sources, 109 (2002) 76-88.

10. K. Shah, W. C. Shin, and R. S. Basser, “Novel Microfabrication Approaches for Directly Patterning PEM Fuel Cell Membranes”, Journal of power sources, 123 (2003) 172-181.

11. Jingrong Yu, Ping Chang, Zhiqi Ma, Baolian Yi, “Fabrication of miniature silicon wafer fuel cells with improved performance”, Journal of power sources, 124 (2003) 40-46.

12. S. S. Hsieh, J. K. Kuo, C. F. Hwang, and H. H. Tsai, “A Novel Design and Microfabrication for a Micro PEMFC”, Microsystem Technology, 10 (2004) 121-126.

13. M. Hayase, T. Kawase, and T. Hatsuzawa, “Miniature 250 µm Thick Fuel Cell Monolithically Fabricated Silicon Electrodes”, Electrochemical and Solid-State Letters, 7 (2004) 231-234.

14. T. Pichonat, B. Gauthier-Manuel, and D. Hauden, “A new proton-conducting porous silicon membrane for small fuel cells”, Chemical Engineering Journal, 101 (2004) 107-111.

15. S. Motokawa, M. Mohamedi, T. Momma, S. Shoji, and T. Osaka, “MEMS-based design and fabrication of a new concept micro direct methanol fuel cell”, Electrochemistry Communications, 6 (2004) 562-565.

16. D. Gruber, N. Ponath, J. Müller, “Microfabricated polymer electrolyte membrane fuel cells with low catalyst loadings”, Electrochimica Acta, 51 (2005) 701-705.

17. D. Gruber, N. Ponath, J. Müller, F. Lindstaedt, “Sputter-deposited ultra-low catalyst loadings for PEM fuel cells”, Journal of Power Sources, 150 (2005) 67-72.

18. C. A.Chang, Journal of Application Physics, 67 (1990) 566.

19. A. Cros, M. O. Aboelfotoh, and K. N. Tu, Journal of Application Physics, 67 (1990) 3328.

20. C.S. Liu, L.J. Chen, Thin Solid Films 262 (1995) 187.

21. 白木靖寬、吉田貞史編著, “薄膜工程學”, (2006) 2-40.

22. V. Svorcik, J. Zehentner, V. Rybka, P. Slepicka, V. Hnatowicz, “Characterization of thin gold layers on polyethyleneterephthalate:transition from discontinuous to continuous, homogenous layer”, Applied Physics A, 75, (2002) 541-544.

23. 謝安和, “二氧化銥之氣體感測性質以及濺鍍金屬之影響”, 國立台灣科技大學化學工程系碩士論文 (2006).

24. 呂俊逸, “質子交換膜燃料電池研究-MEA的製造和性能分析”, 國立中山大學機械工程系碩士論文 (2000).

25. 李軒誠, “質子交換膜燃料電池研究-MEA的製程與應用”, 國立中山大學機械工程系碩士論文 (2001).

26. 林昇佃、余子隆、張幼珍等合著, “燃料電池:新世紀能源”, (2003) 2-12.

27. 宋隆裕、顏貽乙、何淑梅、曹芳海, “水熱條件對質子交換膜燃料電池的影響”, 科儀新知第25卷第6期, (2004) 92-101.

QR CODE