簡易檢索 / 詳目顯示

研究生: 吳哲豪
Che-hau Wu
論文名稱: 可調頻壓電樑之模型推導與振能回收研究
Power Harvest and Model Derivation of An Adjustable PZT Beam
指導教授: 黃世欽
Shyh-Chin Huang
口試委員: 徐茂濱
Mau-Pin Hsu
黃以玫
Yi-Mei Huang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 72
中文關鍵詞: 壓電振動能量擷取系統可調頻
外文關鍵詞: piezoelectric vibration power harvesting systems, adjustable
相關次數: 點閱:281下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文以壓電材料當作力電轉換之媒介,研究開發一壓電振動能量擷取系統(piezoelectric vibration power harvesting systems),針對該系統之力電耦合轉換機制及結構振動之關聯性進行分析,並以實驗輔以驗證。本文首先採用尤拉-伯努力樑之假設,建構一局部覆蓋壓電材料三層樑為理論模型,在忽略力電耦合效應之下,分別推導出各段樑之運動方程式,並配合各相容條件及邊界條件,得到系統之純機械性質模態;接著考慮力電耦合效應以及機械阻尼對樑之影響,計算出壓電懸臂樑之能量式,且由前述所得之模態,將能量式予以離散化,代入拉格朗日方程式,得到系統之運動方程式;其後部電路則採用標準電路的形式,並於開路端加上外掛電容為電路系統模型,推導及模擬該電容之充電情況。文末分別於不同夾持長度下,實驗量測系統頻率以及電容充電情形,驗證了方程式推導之準確性,以及比較多根壓電懸臂樑在不同連接方法下對充電效益之影響,最後將可調式壓電振動能量擷取系統予以實體化,並測試其實用性。
此模型於實務應用上之優點,是可利用固定端未覆蓋部分調整樑之頻率,使得系統共振頻率與環境頻率相近,產生共振而獲得較佳的回收效益;此設計概念可提供未來設計可調頻壓電振動能量擷取系統的工程人員一參考方向。


Piezoelectric materials are widely used as power harvesting device due to its ability to transform mechanical energy into electrical energy and vice versa. In this thesis, a power harvesting model is developed and electrical charge of the model is derived. The model is an adjustable Euler-Bernoulli beam with PZT bounded on its both surfaces. PZT electrodes are shunted with RLC circuit with a standard interface. In the analytic work, first we neglect the electro-mechanical coupling to estimate the mechanical mode shape of the beam. Next, excite the model with harmonic displacement on its boundary condition. The electro-mechanical coupling is considered to calculate the PZT energy form. Assume mode and separation variable method are used to derive the Lagrange equation of motion then with the electrical circuit model the electrical charge is derived. Experimental work is conducted to test and verify the model. Finally, it gives good results. The advantage of this model is the system frequency can be tuned into environment frequency to get better power harvesting which people can continue for future research.

摘 要 I ABSTRACT II 誌 謝 III 目 錄 IV 圖 表 索 引 VI 符 號 索 引 IX 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 2 1.3 本文架構 6 第二章 壓電理論簡介 7 2.1 壓電原理 7 2.2 極化處理 8 2.3 壓電效應 9 2.4 壓電材料本構方程式 11 第三章 部份覆蓋壓電懸臂樑之理論模型建立與電路分析 13 3.1 機械樑之運動方程式推導 14 3.1.1 機械樑之邊界條件與相容條件 18 3.1.2 機械樑之頻率方程式 20 3.1.3 機械樑之固有模態 21 3.2 壓電樑之運動方程式推導 23 3.3 壓電樑之等效電路模型建立 32 3.4 壓電樑對外部掛載電容充電之分析 35 第四章 實驗結果與理論比較分析 41 4.1 壓電樑之尺寸設計探討 42 4.2 壓電樑之共振頻率量測及結果探討 47 4.2.1 實驗設備 47 4.2.2 實驗架構以及測量方式 50 4.2.3 量測結果與探討 53 4.3 壓電樑對外部電容 之實驗 55 4.3.1 壓電樑對不同電容值充電情況之量測及理論驗證 55 4.3.2 壓電樑於不同 下對電容充電之能力比較 57 4.3.3 壓電樑在不同連接方法下對電容充電之能力比較 59 4.3.4 多根壓電樑之操作頻率的選用 62 4.4 可調式壓電振動能量擷取系統 63 第五章 結論與未來展望 65 5.1 結論 65 5.2 未來研究方向 67 參 考 文 獻 68 附 錄 71 作 者 簡 介 72

[1] N.N. Rogacheva, C.C. Chou, and S.H. Chang, 1998, “Electromechanical Analysis of a Symmetric Piezoelectric/Elastic Laminate Structure:Theory and Experiment,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol.45, No.2, pp.285-294.
[2] S.H. Chang, and C.C. Chou, 1999, “Electromechanical Analysis of an Asymmetric Piezoelectric/Elastic Laminate Structur:Theory and Experiment,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol.46, No.2, pp.441-451.
[3] C.Y.K. Chee, L. Tong, and G.P. Steven, 1999, “A Mixed Model for Composite Beams with Piezoelectric Actuators and Sensors,” Smart Materials and Structures, vol.8, pp.417-432.
[4] M. Kommer, 2001, “On the Correction of the Bernoulli-Euler Beam Theory for Smart Piezoelectric Beams,” Smart Materials and Structures, vol.10, pp.668-680.
[5] H.A. Sodano, G. Park, and D.J.inman, 2004, “Estimation of Electric Charge Output for Piezoelectric Energy Harvesting,” Strain, 40, 49-58.
[6] Y.B. Jeon, R. Sood, J.-h. Jeong, and S.-G. Kim, 2005, “MEMS Power Generator with Transverse Mode Thin Film PZT,” Sensors and Actuators A, 122, 16-22.
[7] G.K. Ottman, H.F. Hofmann, and A.C. Lesieutre, 2002, “Optimized Piezoelectric Energy Harvesting Circuit using Step-down Converter in Discontinuous Conduction Mode,” PESC Record – IEEE Annual Power Electronics Specialists Conference, vol.4, pp.1988-1994.
[8] G.K. Ottman, H.F. Hofmann, A.C. bhatt, and A.C. Lesieutre, 2002, “Adaptive Piezoelectric Energy Harvesting Circuit for Wireless remote Power Supply,” IEEE Transactions on Power Electronics, vol.17, pp.669-676.
[9] H. A. Sodano, D.J. Inman, and G. Park, 2005, “Comparison of Piezoelectric
Energy Harvesting Devices for Recharging Batteries,” Journal of Intelligent Material Systems and Structures, vol.16, pp.799-807.
[10] H. A. Sodano, G. Park, D.J. Leo, and D.J. Inman, 2003, “Use of piezoelecteic
energy harvesting device for charging batteries,” Proceedings of Smart Structures and Materials, vol.5050
[11] D. Guyomar, A. Badel, E. Lefeuvre, and C. Richard, 2005, “Toward Energy
Harvesting Using Sctive Materials and Conversion Improvement by Nonlinear
Processing,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency
Control, vol.52, pp.584-594.
[12] Y.C. shu and I.C. Lien, 2006, “Analysis of Power Output for Piezoelectric Energy Harvesting System,” Smart Materials and Structures, vol.15
, pp.1499-1512.
[13] J. Kymissis, C. Kendall, J. Paradiso, N. Gershenfeld, 1998, “Parasitic Power
Harvesting in Shoes,” the Second IEEE International Conference on Wearable Computing.
[14] W.J. Wu, Y.Y. Chen, B.S. Lee, J. J. He and Y.T. Peng, 2006, “ Tunable Resonant Frequency Power Harvesting Devices,” Proceedings of Smart Structures and Materials, vol.6169, 61690A.
[15] V.R. Challa, M.G. Prasad and F.T. Fisher, 2008, “High Efficiency Energy Harvesting Device with Magnetic Frequency Tuning,” Proceedings of Sensord and Structures Technologies for Civil, Mechanical, and Aerospace Systems, vol.6932, 69323Q.
[16] V.R. Challa, M.G. Prasad, Y. shi and F.T. Fisher, 2008, “A Vibration Energy Harvesting Device with Bidirectional Resonance Frequency Tenability,” Smart Materials and Structures, vol.17, pp.015035.
[17] S.C. Huang and Y.C.Chen, 1999, “Parametric Effects on the Vibration of Plates with CLD treatment.” Journal of the Chinese Society of Mechanical Engineers, 20(2), pp.159-167.
[18] 賴炳佑,2004,具拘束阻尼層部份覆蓋樑之振動與阻振分析,國立台灣科
技大學機械工程研究所碩士學位論文。
[19] 莊政縉,2008,壓電振動能量擷取器在標準介面與SSHI介面之分析,國立台灣大學工學院應用力學研究所碩士學位論文。
[20] L. Meirovitch, 1967, “Analytical Methods in Vibrations,” New York, Macmillan
[21] 周卓明,2003,壓電力學,全華科技圖書股份有限公司。

QR CODE