簡易檢索 / 詳目顯示

研究生: 林育正
Yu-Zheng Lin
論文名稱: 以嵌入式系統設計與分析用於自然光照明的自動對準定日鏡
Design and Fabrication of Heliostat System for Natural Light Illumination System
指導教授: 黃忠偉
Allen Jong-Woei Whang
徐敬文
Ching-Wen Hsue
口試委員: 趙涵捷
Han-Chieh Chao
林瑞珠
Jui-Chu Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 53
中文關鍵詞: 自然光照明系統追日系統定日鏡
外文關鍵詞: Daylighting System, Solar Tracker, Solar Heliostat.
相關次數: 點閱:279下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

將自然光引入室內除節能之外,亦對人體有許多正面影響,包含提升工作效率、加速傷患恢復等。過去由黃忠偉教授等人(Whang et al., 2010)提出自然光照明系統的概念,而後王辰佑(Wang, 2014)提出可利用定日鏡架設於自然光照明系統的靜態集光器之前,而使集光效率提升3.32倍。本研究所設計之裝置使用嵌入式系統配合多種感測器,並使用高精度的太陽位置演算法,配合高精度馬達控制,使該裝置擁有超低誤差偏移量,當裝置將日光投射於100公尺目標處的偏移量僅有4.9cm。本研究提出了使用地理座標配合高度差的計算方式,計算定日裝置與光線投射目標的方位角及仰角,使裝置能夠自動對準目標。目前已完成一雛型裝置的機構、硬體電路、軟體設計的相關研究,可實現實時追蹤太陽入射鏡面後反射至目標點的法線,使自然光照明系統的集光系統可在全日維持最佳效能運作狀態。


Guiding nature light into rooms can reduce the use of energy. Besides, there are many advantages for human, such as improving efficiency at work, speeding up the recovery of patients, etc. In the previous studies, Whang et al. (2010) proposes the concept of the natural light illumination system. Wang (2014) investigates the design of a heliostat that reflects sunlight onto static solar concentrator of natural light illumination system, and they makes the system efficiency increase as high as 3.32 times. In this study, our device uses an embedded system with multiple sensors, and applies high-precision solar position algorithm with high-precision motor control, so that the device has a very low offset error.(i.e. the offset of 100 meters from the target is only 4.9cm.) In order to align the target automatically, this study proposes the use of geographic coordinates with difference of attitude to calculate the azimuth and elevation of the target. This work has completed a prototype device, hardware circuits, software design, etc, We realize real-time tracking the normal line of the sun's incidence and reflection to the target. As a result, the light collecting system of natural light illumination system can maintain the best performance in the whole day.

目次 論文摘要 I Abstract II 誌謝 III 目次 IV 圖次 VII 表次 IX 第1章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 3 1.3 論文架構 4 第2章 光學基礎名詞介紹 5 2.1 基本照明單位 5 2.1.1 光通量(Luminous flux,Φ) 5 2.1.2單位立體角(Solid angle, Ω) 6 2.1.3 光強度(Luminous intensity,I) 6 2.1.4 照度(Illuminance,E) 7 2.1.5 輝度(Luminance,L) 8 2.2 輻射量與光度量 8 2.3 幾何光學原理 10 2.4.1費馬定理(Fermat’s Principle) 10 2.4.2反射定律(Law of reflection) 10 2.4.3司乃爾定律(Snell’s Law) 11 2.4.4 全反射(Total reflection) 11 2.4.5 集光比(Concentration ratio) 12 2.4.6 光展量(E’tendue) 13 第3章 嵌入式系統平台及感測器與步進馬達原理簡介 15 3.1嵌入式系統與開發軟體 15 3.1.1嵌入式系統平台-STM32 15 3.1.2晶片開發編譯器-Keil µVision IDE 16 3.1.3電腦程式開發編譯器-Code::Blocks 17 3.2感測器相關原理 17 3.2.1電子羅盤 17 3.2.2氣壓高度計 18 3.2.3 姿態感測器 19 3.2.4 GPS定位晶片 19 3.3步進馬達原理與步進馬達驅動器 20 3.3.1步進馬達原理 20 3.3.2步進馬達驅動器 21 第4章 自然光照明系統簡介 23 4.1 前集光子系統 23 4.2 集光子系統 24 4.3 傳光子系統 26 4.4 放光子系統 27 第5章 太陽位置、經緯儀式架台定日及地理位置算法 29 5.1太陽位置演算法 29 5.1.1太陽位置計算原理 29 5.1.2優化的太陽位置演算法比較與選用 31 5.2經緯儀式架台定日演算法 32 5.3定日鏡與目標相對位置計算方法 35 5.3.1 Vicenty’s Solution計算兩座標點相對方位角 35 5.3.2定日鏡與目標點仰角計算方法 36 第6章 定日鏡設計與結果分析 37 6.1定日鏡機構設計 37 6.1.1 仰角旋轉機構設計 38 6.1.2 方位角旋轉機構設計 39 6.1.3 機構成品 40 6.1.4 鏡面仰角及方位角歸零方式 41 6.2定日鏡硬體電路設計與分析 43 6.2.1以步進馬達驅動器提升步進馬達精度 43 6.2.2硬體電路架構 44 6.3定日鏡軟體設計驗證與分析 46 6.3.1經緯儀式架台定日演算法驗證 46 6.3.5定日鏡控制系統規劃與定日流程設計 47 6.3.2 演算法於嵌入式系統運算速度分析 49 第7章 結論與未來展望 50 7.1 結論 50 7.2 未來展望 51 參考文獻 52

[1] 2012 CBECS Survey Data. (2015). Retrieved from http://www.eia.gov/consumption/commercial/
[2] ADDICARE. (2016). NEO-6M GPS Module with EEPROM. Retrieved from http://www.addicore.com/NEO-6M-GPS-p/231.htm
[3] Annual Energy Review. (2011). U.S. Energy Information Administration. Retrieved from http://www.eia.gov/totalenergy/data/annual/
[4] Blanco-Muriel, M., Alarcón-Padilla, D. C., López-Moratalla, T., & Lara-Coira, M. (2000). Computing the Solar Vector. Solar Energy, 70.
[5] Braun, J. E., & Mitchell, J. C. (1983). Solar geometry for fixed and tracking surfaces. Solar Energy, 31(5).
[6] Chen, Y. T., Kribus, A., Lim, B. H., Lim, C. S., Chong, K. K., Karni, J., . . . Phahl, A. (2004, FEBRUARY 12). Comparison of Two Sun Tracking Methods in the Application of a Heliostat Field. Journal of Solar Energy Engineering.
[7] Chong, K. K., & Tan, M. H. (2011, May 19). Range of motion study for two different sun-tracking methods in the application of heliostat field. Solar Energy.
[8] Cucumo, M., Kaliakatsos, D., & Marinelli, V. (1997). General calculation methods for solar trajectories. Renewable Energy, 11(2).
[9] Hecht, E. (2001). Optics (4th ed.).
[10] Honeywell. (2013). 3-Axis Digital Compass IC HMC5883L(Advanced Information).
[11] ICAO. (2007). Meteorological Service for International Air Navigation (6th ed.).
[12] Kischkoweit-Lopin, M. (2002, May 31). An overview of daylighting systems. Solar Energy.
[13] La Forêt Engineering Co., L. (2014). Solar lighting system 「HIMAWARI」. LA FORMAT ENGINEERING. Retrieved from http://www.himawari-net.co.jp/e-pdf/Himawari-Proposal-New-140207.pdf
[14] Littlefair, P. J. (2001, March). Photoelectric control: the effectiveness of techniques to reduce switching frequency. Lighting Research & Technology.
[15] Reda, I., & Andreas, A. (2004). Solar position algorithm for solar radiation applications. Solar Energy, 76.
[16] Roche, L. (2002, March). Summertime performance of an automated lighting and blinds control system. Lighting Research & Technology.
[17] Selkowitz , S. E., & Lee, E. S. (2005, December). The New York Times Headquarters Daylighting Mockup:Monitored performance of the daylighting control system. Energy and Buildings.
[18] Solatube® (Producer). (2016, July 4). A global leader in residential & commercial daylighting systems. http://www.solatube.com/. Retrieved from http://www.solatube.com/
[19] SparkFun. (2016). SparkFun Barometric Pressure Sensor Breakout - BMP180. Retrieved from https://www.sparkfun.com/products/11824
[20] STMicroelectronics. (2016). STM32F103RC. STMicroelectronics. Retrieved from http://www.st.com/content/st_com/en/products/microcontrollers/stm32-32-bit-arm-cortex-mcus/stm32f1-series/stm32f103/stm32f103rc.html
[21] Vinccnty, T. (1975). Direct and Inverse Solutions of Geodesics on the Ellipsoid with application of nested equations. Survey Review, 176.
[22] Walrave, R. (1977). CALCULATING THE POSITION OF THE SUN. Solar Energy, 20.
[23] Whang, A. J.-W., Chen, Y.-Y., Yang, S.-H., Pan, P.-H., Chou, K.-H., Lee, Y.-C., . . . Chen, C.-N. (2010, December 9). Natural light illumination system. Applied Optics.
[24] Wikipedia. (2016). Global Positioning System. Retrieved from https://en.wikipedia.org/wiki/Global_Positioning_System
[25] Winston, R., Miñano, J. C., Benítez, P., & Welford, W. T. (2005). Nonimaging optics. Amsterdam ; Boston, Mass.: Elsevier Academic Press.
[26] Wymelenberg, K. V. D. (2014). The Benefits of Natural Light. ARCHITECTURAL LIGHTING. Retrieved from http://www.archlighting.com/technology/the-benefits-of-natural-light_o
[27] 王岳華. (2001). GPS晶片原理與市場現況. Retrieved from http://www.ctimes.com.tw/DispArt/tw/0112051024BX.shtml
[28] 何友瀚. (2013). Multi-Sources Freeform Lens Design Applied on Natural Light Illumination Systems.

QR CODE