簡易檢索 / 詳目顯示

研究生: 翁瑋婷
Wei-ting Wong
論文名稱: 建築結構耐風生命週期成本之評估
Life Cycle Cost Assessment of Buildings Under Wind
指導教授: 陳瑞華
Rwey-Hua Cherng
口試委員: 鄭蘩
Jeng Van
黃慶東
Ching-Tung Huang
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 150
中文關鍵詞: 生命週期成本不確定性可靠度分析
外文關鍵詞: life cycle cost, uncertainty, reliability
相關次數: 點閱:191下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

考慮到近年來颱風所造成的巨大災害,為了保護人民生命財產和降低損失至大眾可接受的程度,除了人命安全之安全性能水準須確保於容許程度內,另一方面可由經濟和風險之考量,因此,為了在合理成本的情況下,達到令人滿意的結構性能,必須仔細考量建築物生命週期成本。
本研究考慮建築結構頂層總加速度與外部玻璃兩個極限狀態;其中以隨機過程和隨機變數模擬載重和抵抗力之不確定性;隨機變數之不確定性包含與生俱來與知識不足之不確定性。成本部分考慮初始成本與損失成本(維修成本、經濟損失與人員傷亡成本),此外亦將不同時間點之成本折現至相同時間點以便比較。
本研究考量工程上的不確定性,結合可靠度評估和生命週期成本,建立一套生命週期成本的分析流程與架構。


In view of the large damage suffered in recent typhoons, in order to protect life and reduce damage and loss to an acceptable level, satisfactory performance at a reasonable cost, the building life-cycle cost need to be carefully considered.
The structural limit states are response acceleration at top of building and windows of building. The major considerations in a lifecycle cost analysis are proper treatment of uncertainties in the demand and capacity and costs incurred due to unsatisfactory performance. The uncertainties in the loads and resistance are modeled by random processed and random variables. In considering uncertainties, it is important to recognize two broad types, the aleatory type and epistemic type. Costs of construction, consequences of structural limit states including damage, revenue loss, death and injury as well as discounting cost over time are considered.
A method is proposed for modeling the uncertainties and evaluation of the expected life-cycle cost of an engineering system under a hazard.

目錄 I 表目錄 IV 圖目錄 VII 第一章 緒論 1 1.1 研究動機和目的 1 1.2 研究內容與架構 2 第二章 建築結構生命週期成本基本架構 5 2.1 前言 5 2.2 建築結構生命週期成本基本架構之定義 7 2.3 建築結構初始成本之估計 10 2.4 建築結構損失成本之估計 11 2.5 折現率與通貨膨脹率之介紹 14 第三章 單一颱風作用下建築結構物頂層總加速度之條件超越機率 19 3.1 頂層總加速度舒適度層級之定義與不確定性分析 19 3.2 頂層總加速度超越門檻值之極限狀態定義 21 3.3 頂層條件總加速度之分析 23 3.2.1 廣義單自由度分析模式 23 3.2.2 順風向、橫風向與扭轉向廣義風力頻譜之建立 29 3.2.3 順風向、橫風向與扭轉向加速度之建立 33 3.2.3.1 順風向振動加速度之建立 33 3.2.3.2 橫風向振動加速度之建立 37 3.2.3.3 扭轉向振動加速度之建立 39 3.2.4 頂層條件總加速度之組合方式 41 3.4 求解頂層總加速度之條件超越機率 42 3.3.1 向上超越法 42 3.3.2 極值分佈模擬最大尖峰分佈法 44 第四章 單一颱風作用下建築結構物頂層總加速度之超越機率 48 4.1 頂層總加速度之系統參數不確定性分析 48 4.2 時變可靠度分析 52 4.2.1 快速積分法 52 4.2.1.1 快速積分法之基本架構 52 4.2.1.2 反應曲面法之介紹 55 4.3 頂層總加速度達不同舒適度層級之損失與不確定性分析 58 第五章 建築結構外部玻璃之破壞機率 61 5.1 前言 61 5.2 外部玻璃損害層級之定義 62 5.3 外部玻璃破壞達破壞比例之極限狀態定義 62 5.4 風壓造成一片玻璃破壞之機率 65 5.5 飄散物撞擊造成一片玻璃破壞之機率 67 5.6 外部玻璃之參數不確定性分析 69 5.7 外部玻璃達不同損害層級之損失與不確定性分析 70 第六章 實例分析 73 6.1 目標建築結構基本特性之介紹 73 6.2 問題定義與分析流程 74 6.3 頂層總加速度超機率分析 75 6.4 外部玻璃破壞機率分析 75 6.4.1 建築結構外部玻璃種類與厚度之決定 75 6.4.2 外部玻璃破壞機率分析 75 6.5 生命週期成本之評估 75 第七章 結論與建議 75 7.1 結論 75 7.2 建議 75 附錄A. 、 與 75 附錄B. 第一次超越機率求解方法 75 參考文獻 75

[1] Ahsan Kareem, “aerodynamic response of structures with parametric uncertainties”, structural aerodynamics and ocean system modeling laboratory, Cullen College of Engineering, University of Huston, Huston, TX 77004 (U.S.A.), received July 10, 1987, accepted in revised form May 5, 1988
[2] Ali Al-Karaghouli, L.L. Kazmerski, Optimization and life-cycle cost of health clinic PV system for a rural area in southern Iraq using HOMER software, 2010
[3] Brian E. Lee and John Wills, “Vulnerability of Fully Glazed High-Rise Buildings in Tropical Cyclones”
[4] C. O. Unanwa, J. R. McDonald, ”Statistical Analysis of Tornado-Generated Wood Missiles”, ASCE Specialty Conference on Probabilistic Mechanics and Structural Reliability, 2000
[5] C. Y. Yang, “Random Vibration of Structures”, New York : Wiley, c1986
[6] Davenport. A. G., “Gust loading factors”, J. Struct. Div., ASC, 96(6), 11-34
[7] Davenport, A. G., “The Relationship of Reliability to Wind Loading”, Journal of Wind Engineering and Industrial Aerodynamics, Vol. 13, No. 1-3, pp. 3-17, Dec, 1983
[8] Davenport, A. G., “On the assessment of the reliability of wind loading on low building”, Journal of Wind Engineering and Industrial Aerodynamics, Vol. 11, pp. 21-37, 1983
[9] A.G. Davenport, Director and professor, “Considerations in relating wind tunnel results to design for a specific site”, Boundary Layer Wind Tunnel Laboratory, Faculty of Engineering Science, The University of Western Ontario, London, Ontario, Canada, N6A 5B9
[10] Ellingwood, B., “Wind and Snow Load Statistics for Probabilistic Design”, Technical Notes, ASCE, ST7, pp. 1345-1350, July, 1981
[11] F. K,Chang, “Human Response to motions in tall buildings”, J. Struct. Div. ASCE, 98
[12] Ho, T. C. E., Surry, D., and Davenport, A. G., “Low Building wind Load Variability with application to codes”, Journal of Wind Engineering and Industrial Aerodynamics, Vol. 41-44, pp. 1978-1798, 1992
[13] H. S. Ang, W. H. Tang, “Probability Concepts in Engineering Planning and design Volume II, decision, risk, and reliability”, 1984
[14] Jamie E. Padgett, Kristina Dennemann, Jayadipta Ghosh, Risk-based seismic life-cycle cost–benefit (LCC-B) analysis for bridge retrofit assessment, 2009
[15] Jean-Paul Pinelli, Emil Simiu, Kurt Gurley, Chelakara Subramanian, Liang Zhang, Anne Cope, James J. Filliben, and Shahid Hamid, ” Hurricane Damage Prediction Model for Residential Structures”
[16] John A. Cornell, “Volume 8: How to Apply Response Surface Methodolog”, American Society for Quality Statistics Division, 1990
[17] Joseph E. Minor, P. E., “Performance of roofing systems in wind storms”, NRCA/NBS proceedings of the symposium on roofing technology, Sept 1977
[18] Joseph E. Minor, P. E., “Lessons Learned from Failures of the Building Envelope in Windstorms”, Journal of Architectural Engineering, Vol. 11, No. 1, March 1, 2005
[19] Kareem, A., “Reliability analysis on wind-sensitive structures”, Journal of Wind Engineering and Industrial Aerodynamics, Vol. 33, pp. 495-514, 1990
[20] Kareem, A. and J. Hseih, “Reliability analysis of concrete chimneys under wind loading”, department of civil engineering, university of Houston, Houston, tx77004, 1986
[21] Marshall, T.P., “Utilization of load/resistance statistics in a wind speed assessment”
[22] Minor, J.E., “Windborne debris and the building envelope”, Journal of Wind Engineering and Industrial Aerodynamics, 1994
[23] Nader M. Okasha, Dan M. Frangopol, Lifetime-oriented multi-objective optimization of structural maintenance considering system reliability, redundancy and life-cycle cost using GA, 2009
[24] Ning Lin. and Erik Vanmarcke., “Windborne debris risk assessment”, Probabilistic Engineering Mechanics, 2007
[25] Nur Yazdani, Perry S. Green, Saif A. Haroon, “Large Wind Missile Impact Capacity of Residential and Light Commercial Buildings”, Practice Periodical on Structural Design and Construction, Vol. 11, No. 4, November 1, 2006
[26] Paul H. Wirsching, Thomas L. Paez, and Keith Ortiz., “Random vibrations theory and practice”, 1995
[27] Peter J. Vickery, Peter F. Skerlj, Jason Lin, Lawrence A. Twisdale Jr., Michael A. Young, and Francis M. Lavelle, “HAZUS-MH Hurricane Model Methodology. I: Hurricane Hazard, Terrain, and Wind Load Modeling”, ASCE, Natural Hazards Rev. Volume 7, Issue 2, pp. 82-93 (May 2006)
[28] Peter J. Vickery, Peter F. Skerlj, Jason Lin, Lawrence A. Twisdale Jr, Michael A. Young, and Francis M. Lavelle, “HAZUS-MH Hurricane Model Methodology. II: Damage and Loss Estimation”, ASCE, Natural Hazards Rev. Volume 7, Issue 2, pp. 94-103 (May 2006)
[29] Pham, L., Holmes, J. D., and Leicester, R. H., “Safety indices for wind loading in Australia”, Journal of Wind Engineering and Aerodynamics, Vol. 14, 1983, pp. 3-14.
[30] P. Mendis, T. Ngo, N. Haritos, A. Hira, B. Samali, J. Cheung, “Wind Loading on Tall Buildings”, EJSE Special Issue: Loading on Structures,2007
[31] R. Kumar, P. Gardoni, M. Sanchez Silva, Effect of cumulative seismic damage and corrosion on the life-cycle cost of reinforced concrete bridges, 2008
[32] Ravindra, M. K., Cornell, C. A., and Galambos, T.V., “Wind and Snow Load Factors for use in LRFD”, Journal of the Structural Division, ASCE, ST9, pp. 1443-1457, September, 1978
[33] Schueller, G.I., Hirtz, H., and Booz, G. “The effect of uncertainties in wind load estimation on reliability assessments”, Journal of Wind Engineering and Industrial Aerodynamics, Vol. 14, pp. 15-26, 1983
[34] Simiu, E., “Wind spectra and dynamic alongwind response”, J. Struct. Engrg., ASCE. 100(9), 1897-1910
[35] Simiu, E. and Scanlan, R. H., “Wind effects on structures”, John Wiley, NY, 1986
[36] Solari, E., Member, ASCE, “Gust buffeting. I: Peak wind velocity and equivalent pressure”, ASCE, Journal of structural engineering, vol. 119, no.2, 1993
[37] Solari, E., Member, ASCE, “Gust buffeting. II: Dynamic alongwind response”, ASCE, Journal of structural engineering, vol. 119, no.2, 1993
[38] Solari, E., Kareem, A., “On the formulation of ASCE7-95 gust effect factor”, Journal of wind engineering and industrial aerodynamics, 1998
[39] S. Timoshenko and S. Woinowsky-Krieger, “Theory of plates and shells”, New York, McGraw-Hill, 1959
[40] Tiphaine Williams and Ahsan Kareem, “Performance of building cladding in urban environments under extreme winds”
[41] Vickery, B. J., “On the Reliability of Gust Loading Factors”
[42] W. Lynn Beason, Gerald E. Meyers, and Ray W. James, “Hurricane related window glass damage in Houston”, ASCE
[43] Yi-Kwei Wen, “Application of Reliability in Earthquake Engineering”, International Workshop on Frontier Technologies for Infrastructures Engineering
[44] Y. K. Wen, Member, ASCE, and Y. J. Kang, “Minimum Building Life-cycle Cost Design Criteria. I: Methodology”, Journal of structural engineering New York, N.Y. 127 (3), pp. 330-337, 2001
[45] Y. K. Wen, Member, ASCE, and Y. J. Kan, “Minimum Building Life-cycle Cost Design Criteria. II: Applications”, Journal of structural engineering New York, N.Y. 127 (3), pp. 338-346, 2001
[46] Y. K. Wen, Minimum lifecycle cost design under multiple hazards, reliability engineering and system safety 73, 223-231, 2001
[47] Y. K. Wen, “International Workshop on Frontier Technologies for Infrastructures Engineering, Application of Reliability in Earthquake Engineering”, 先進基礎建設技術國際研討會, 2008
[48] Yue Li, Bruce R. Ellingwood, “Hurricane damage to residential construction in the US: Importance of uncertainty modeling in risk assessment”, Engineering Structures, 1009-1018, 2006
[49] Yukio Tamura, “Wind Resistant Design of Tall Buildings in Japan”, Wind Engineering Research Center, Tokyo Polytechnic University, Atsugi, Kanagawa, Japan 234-297
[50] Yukio Tamura, “Extreme Winds and damage assessment”, Wind Engineering Research Center, Tokyo Polytechnic University, 1583 Iiyama, Atsugi, Kanagawa, Japan
[51] Yoshifumi Nakamura, Naomi Kawata, Tetsuro Miyazato, The investigation of life cycle cost on the basis of functional diagnosis in Tha Ngon project in Laos, 2009
[52] Zongzhi Li, Sunil Madanu, Highway Project Level Life-Cycle Benefit/Cost Analysis under Certainty, Risk, and Uncertainty: Methodology with Case Study, 2009
[53] 黃良充,建物成本法估價與營造施工費之探討、捷運技術半年刊第36期,民國96年2月
[54] 建築物荷重指針•解說,日本建築學會,1993年
[55] 劉大海、楊翠如、鍾錫根,高樓結構概念與系統,科技圖書股份有限公司,民國85年8月初版
[56] 薛立敏,社會折現率與世代間正義關係之探討,東吳政治學報,第七期,民國八十六年
[57] 陳慶銘,帷幕牆工程標準規範與解說(草案),內政部營建署暨內政部建築研究所,民國88年
[58] 張四明,成本效益分析在政府決策上的應用與限制,行政暨政策學報,第三期,民國九十年
[59] 黃淸毅硏究主持,金屬帷幕牆設計技術手册之編訂,內政部建築硏究所委託硏究報告,2003年
[60] 葉錦勳,台灣地震損失評估系統-TELES,國家地震工程研究中心中心技術報告,2003年
[61] 羅憶、劉忠偉,建築玻璃生產與應用,北京化學工業出版社,2005年3月第1版
[62] 陳慶銘、施乃中、林慶元,建築帷幕牆工程標準規範、解說,詹氏書局大境研究室出版系列
[63] 姜堯民,財務管理概論,新陸書局股份有限公司,民國九十六年

[64] 廖志昌,風力規範中標稱風速與高樓舒適度條文可靠度之研究,國立台灣科技大學營建工程系碩士論文,1994年
[65] 黃新達,建築結構順風向與橫風向風力載重之不確定性分析,國立台灣科技大學營建工程系碩士論文,1997年
[66] 洪明德,建築物總風力載重不確定性之分析,國立台灣科技大學營建工程系碩士論文,1997年
[67] 徐偉誌,建築結構橫風向耐風反應譜之研究,國立台灣科技大學營建工程系碩士論文,2002年
[68] 盧明謙,建築物玻璃覆面之耐風設計,國立台灣科技大學營建工程系碩士論文,2003年
[69] 李佳穎,重點取樣法於時變可靠度分析之應用,國立台灣科技大學營建工程系碩士論文,2004年
[70] 張景鐘,王人牧,風災調查與風害模式之探討,內政部建築研究所委託研究報告,2004年
[71] 廖凰茹,地震保險與風險評估之探討,國立台灣海洋大學河海工程學系碩士論文,2004年
[72] 陳瑞華,高士哲,建築物耐風設計規範是範例研擬與解說,內政部建築研究所研究報告,2007年
[73] 簡欣俞,風災調查和災損資料庫建置與保險制度探討,國立台灣海洋大學河海工程學系碩士論文,2007年

[74] http://www.dgbas.gov.tw/lp.asp?ctNode=2852&CtUnit=1088&BaseDSD=7&mp=1,目前國內編有那些物價指數?如何應用?,行政院主計處網站
[75] http://www.stat.gov.tw/lp.asp?CtNode=486&CtUnit=331&BaseDSD=7&mp=4,物價指數背景資料說明,行政院主計處網站
[76] 台灣風力規範
[77] 日本風力規範
[78] 美國風力規範

無法下載圖示 全文公開日期 2015/07/28 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE