簡易檢索 / 詳目顯示

研究生: 劉宗憲
Tsung-Hsien Liu
論文名稱: 非隔離倂網型太陽能功率轉換器共模電流之抑制
Common-Mode Current Reduction for Transformerless Grid-Connected Photovoltaic Inverters
指導教授: 黃仲欽
Jonq-Chin Hwang
口試委員: 劉添華
Tian-Hua Liu
葉勝年
none
賴炎生
none
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 68
中文關鍵詞: 非隔離倂網型共模電流抑制太陽能功率轉換器
外文關鍵詞: transformerless grid-connected, common-mode current reduction, photovoltaic inverter
相關次數: 點閱:115下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  本論文提出新的電感-電容濾波器架構改良換流器之共模電流,應用於三相非隔離倂網型太陽能功率轉換器,以降低太陽能光電板負極對地的電壓變動與功率轉換器輸出端之三相共模電流,避免縮短太陽能光電板的使用壽命及危害到人員的安全。在太陽能板側採用昇壓型直流-直流功率轉換器架構,將太陽能光電板的直流電壓560V提昇至670V,提供給直流-交流功率轉換器使用,由三相全橋型直流-交流功率轉換器搭配使用電壓空間向量脈波寬度調變將直流鏈電壓轉換為三相交流電流饋入市電。
  本文採用32位元的數位信號處理器作為系統控制核心,以減少硬體電路。並利用電力電子模擬軟體Powersim進行分析改良型電感-電容濾波器策略的抑制效果。本文已完成10 kW三相非隔離倂網型太陽能功率轉換器之系統雛型,由實驗結果顯示,其太陽能光電板負極對地變動量的實測值由1,793V降至181V,而對應之三相共模電流變動量由253 mA降至99 mA。故本文提出的電感-電容濾波器較現有被動式抑制法的共模電流抑制效果佳,適用於非隔離倂網型太陽能功率轉換器之倂網系統。


  This thesis proposes a novel inductance-capacitance filter to improve the common-mode current for transformerless grid-connected photovoltaic (PV) inverters. Reduction of the voltage of PV negative electrode with respect to ground is then resulted to avoid shortening the service life of PV array and harming the personnel safety. A boost-type dc-dc converter is introduced to boost the PV array voltage from 560V to 670V on output side of PV array for inverter input. The three-phase full-bridge inverter designed uses voltage space vector pulse-width modulation to convert dc-link voltage to three-phase alternating current for grid-connection.
  In this thesis, a 32-bit digital signal processor is adopted as the control core for reducing the circuit complexity. The Powersim simulation software is used to analyse the suppression effect of the proposed inductance-capacitance filter. A 10 kW prototype of transformerless grid-connected three-phase PV inverter is built. Experimental results show that the voltage of PV negative electrode to ground is reduced from 1,793V to 181V, and the corresponding common-mode current is reduced from 253 mA to 99 mA, respectively. The proposed inductance-capacitance filter is better than current passive techniques in the suppression effect of common-mode current. Thus it is applicable for transformerless grid-connected photovoltaic inverters.

中文摘要............................................I 英文摘要............................................Ⅱ 誌  謝............................................Ⅲ 目 錄............................................Ⅳ 符號索引............................................Ⅵ 圖表索引............................................Ⅷ 第一章緒論........................................1  1.1研究動機與目的..............................1  1.2相關文獻探討................................3  1.3系統架構....................................5  1.4本文研究方法及特色..........................7  1.5本文大綱....................................8 第二章非隔離倂聯型功率轉換器所造成的共模電流......9  2.1前言........................................9  2.2共模電流的形成路徑..........................9  2.3共模電流的影響..............................11  2.4共模電流的法規與檢測........................14   2.4.1共模電流的法規要求..........................14   2.4.2共模電流的檢測方式..........................15  2.5結語........................................16 第三章三相非隔離功率轉換器之共模電流抑制策略......17  3.1前言........................................17  3.2三相脈波寬度調變控制策略....................17   3.2.1電壓向量空間脈波寬度調變....................20   3.2.2非連續脈波寬度調變..........................20   3.2.3近似零狀態脈波寬度調變......................21   3.2.4主動式零狀態脈波寬度調變....................21  3.3主動式抑制方法..............................22   3.3.1主動共模電壓抑制器..........................22   3.3.2輔助共模電壓合成器..........................23  3.4被動式抑制方法..............................23   3.4.1電感-電容濾波器.............................23   3.4.2電感-電容-電阻濾波器........................26   3.4.3共模變壓器..................................26   3.4.4相位臂共模電壓抑制器........................27  3.5本文改良型的抑制方法........................28   3.5.1多階型電感-電容濾波器.......................28   3.5.2輔助型電感-電容濾波器.......................30  3.6 結語........................................31 第四章共模電流抑制策略的模擬與實測................32  4.1前言........................................32  4.2實體製作....................................32   4.2.1數位訊號處理器之介面定義....................32   4.2.2直流電壓偵測電路............................33   4.2.3電流回授電路................................34   4.2.4市電側電壓偵測電路與市電側電壓零交越點檢測電 路.......................................... 35   4.2.5功率開關與閘極驅動電路......................35  4.3三相共模電流抑制之設計分析..................36  4.4改良型共模電流抑制之模擬結果................38   4.4.1多階型電感-電容濾波器之模擬.................39   4.4.2輔助型電感-電容濾波器之模擬.................40  4.5三相市電倂網之共模電流抑制實測..............47   4.5.1電感-電容濾波器與其它被動式的抑制之實測.....47   4.5.2改良多階型電感-電容濾波器的抑制之實測.......49   4.5.3改良輔助型電感-電容濾波器的抑制之實測.......51  4.6結語........................................52 第五章結論與建議..................................54  5.1結論........................................54  5.2建議........................................55 參考文獻............................................56 附錄 A德國太陽能功率轉換器之市電倂聯規範概述......59 附錄 B三相併網型太陽能功率轉換器之規格與參數......62 附錄 C實體製作照片................................64 作者簡介............................................67

[1] 賴炎生、陳柏燊、邱春兆,「變頻器常見技術問題-共模電壓問題篇」,電機月刊,第十四卷,第六期,第264~272頁,民國九十三年。
[2] 蔡明村、鄭尊仁、張益華、吳英豪,「變頻器共模電壓抑制策略與電磁干擾問題之研究」,國科會專題研究報告(NSC92-2213-E-218-005),臺北,臺灣,民國九十三年。
[3] 蔡明村、鄭尊仁、林賢忠、張益華,「變頻器共模電壓抑制策略與電磁干擾問題之研究」,國科會專題研究報告(NSC91-2213-E-218-034),臺北,臺灣,民國九十二年。
[4] 蔡明村、鄭尊仁、劉珈宏、林賢忠,「變頻器高共模雜訊對馬達與周圍敏感設備影響之研究」,國科會專題研究報告(NSC90-2213-E-218-025),臺北,臺灣,民國九十一年。
[5] O. Lopez, R. Teodorescu, F. Freijedo and J. D. Gandoy, “Leakage Current Evaluation of a Single-Phase Transformerless PV Inverter Connected to the Grid,” IEEE Applied Power Electronics Conference, pp.907-912, 2007.
[6] E. Un and A. M. Hava, “A High Performance PWM Algorithm for Common Mode Voltage Reduction in Three-Phase Voltage Source Inverters,” IEEE Power Electronics Specialists Conference, pp.1528-1534, 2008.
[7] E. Un and A. M. Hava, “A Near State PWM Method With Reduced Switching Frequency And Reduced Common Mode Voltage For Three-Phase Voltage Source Inverters,” IEEE International Electric Machines & Drives Conference, vol.1, pp.235-240, 2007.

[8] E. Un and A. M. Hava, “Performance Analysis and Comparison of Reduced Common Mode Voltage PWM and Standard PWM Techniques for Three-Phase Voltage Source Inverters,” IEEE Applied Power Electronics Conference and Exposition, pp.7, 2006.
[9] A. Rao, T. A. Lipo and A. L. Julian, “A Modified Single Phase Inverter Topology with Active Common Mode Voltage Cancellation,” IEEE Power Electronics Specialists Conference, vol.2, pp.850-854, 1999.
[10] S. Ogasawara and H. Akagi, “Suppression of Common-Mode Voltage in a PWM Rectifier/Inverter System,” IEEE Industry Applications Conference, vol.3, pp.2015-2021, 2001.
[11] S. Ogasawara, H. Ayano and H. Akagi, “An Active Circuit for Cancellation of Common-Mode Voltage Generated by a PWM Inverter,” IEEE Transactions on Power Electronics, vol.13, no.5, pp.835-841, 1998.
[12] S. Ogasawara, H. Akagi and H. Ayano, “Active Common Mode Canceler,” U.S. Pat., 5831842, 1998.
[13] M. D. Manjrekar and T. A. Lipo, “An Auxiliary Zero State Synthesizer to Reduce Common Mode Voltage in Three-Phase Inverters,” IEEE Industry Applications Conference, vol.1, pp.54-59, 1999.
[14] J. K. Steinke, “Use of an LC Filter to Achieve a Motor-Friendly Performance of the PWM Voltage Source Inverter,” IEEE Transactions on Energy Conversion, vol.14, no.3, pp.649-654, 1999.
[15] N. Hanigovszki, J. Poulsen, G. Spiazzi and F. Blaabjerg, “An EMC Evaluation of the use of Unshielded Motor Cables in AC Adjustable Speed Drive Applications,” IEEE Power Electronics Specialists Conference, vol.1, pp.75-81, 2004.
[16] M. Ortiz, L. Moran, L. Palma and P. Enjeti, “A Dual Connected Passive Filter Scheme For PWM Converters,” IEEE Power Electronics Specialists Conference, pp.4022-4026, 2008.
[17] L. Palma, M. H. Todorovic and P. N. Enjeti, “Analysis of Common- Mode Voltage in Utility-Interactive Fuel Cell Power Conditioners,” IEEE Transactions on Industrial Electronics, vol.56, no.1, pp.20-27, 2009.
[18] 許世昌、劉文成、廖朝旭,「變頻器高頻洩漏電流防制裝置及其方法」,中華民國發明專利,I449955,民國九十年。
[19] H. Ayano, A. Mishima and S. Inarida, “Power Conversion System,” U.S. Pat., 6377479, 2002.
[20] M. M. Swamy, K. Yamada and T. Kume, “Common Mode Current Attenuation Techniques for Use with PWM Drives,” IEEE Transactions on Power Electronics, vol.16, no.2, pp.248-255, 2001.
[21] T. Kume and M. M. Swamy, “Variable Frequency Drive Noise Attenuation Circuit,” U.S. Pat., 6028405, 2000.
[22] T. Kume and M. M. Swamy, “Variable Frequency Drive Noise Attenuation Circuit,” U.S. Pat., 6208098, 2001.
[23] D. Cochrane, D. Y. Chen and D. Boroyevic, “Passive Cancellation of Common-Mode Noise in Power Electronic Circuits,” IEEE Transactions on Power Electronics, vol.18, no.3, pp.756-763, 2003.
[24] W. Zhi, X. Rui, H. Jin, Y. Chuan and H. Xu, “Study on Common Mode Voltage Suppression Based on Three-Phase Four-Leg Inverter,” IEEE Transactions on Industrial Electronics and Applications, pp.1512-1516, 2008.
[25] A. L. Julian, T. A. Lipo and G. Oriti, “Elimination of Common Mode Voltage in Three Phase Sinusoidal Power Converters,” IEEE Power Electronics Specialists Conference, vol.2, pp.1968-1972, 1996.
[26] A. Videt, P. L. Moigne, N. Idir, P. Baudesson and J. Ecrabey, “A New Carrier-Based PWM for the Reduction of Common Mode Currents Applied to Neutral-Point-Clamped Inverters,” IEEE Applied Power Electronics Conference, pp.1224-1230, 2007.
[27] H. J. Kim, H. D. Lee and S. K. Sul, “A New PWM Strategy for Common Mode Voltage Reduction in Neutral-Point Clamped Inverter-Fed AC Motor Drivers,” IEEE Industry Applications Conference, vol.3, pp.2032-2036, 2000.
[28] P. C. Loh, D. G. Holmes, Y. Fukuta and T. A. Lipo, “Reduced Common Mode Carrier-Based Modulation Strategies for Cascaded Multilevel Inverters,” IEEE Industry Applications Conference, vol.3, pp.2002-2009, 2002.
[29] Q. Jiang and J. Brown, “Simulation of EMC Performance of Grid Connected PV Inverters,” Conference Proceedings of Australasian Universities Power, Inc., 2002.
[30] N. Mutoh, M. Kanesaki, J. Nakashima and M. Ogata, “A New Method to Control Common Mode Currents Focusing on Common Mode Current Paths Produced in Motor Drive Systems,” IEEE Industry Applications Conference, vol.1, pp.459-466, 2003.
[31] T. H. Ortmeyer, N. Suzuki and T. Hiyama, “High Frequency Ground Current Flow Paths in Integrated Power Systems,” IEEE Power Engineering Society Summer Meeting, vol.1, pp.36-41, 2002.
[32] N. G. Dhere, V. V. Hadagali and S. M. Bet, “Leakage Current Pathways, Magnitudes And Their Correlation to Humidity And Temperature In High Voltage Biased Thin Film PV Modules,” Florida Solar Energy Center, USA.

無法下載圖示 全文公開日期 2014/08/03 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE