簡易檢索 / 詳目顯示

研究生: 李高億
Gao-Yi - Li
論文名稱: 以相位可重置合成傳輸線實現場型重置天線與雙天線整合相位陣列之晶片化研究
Pattern Reconfigurable Antenna using Phase Reconfigurable Synthesized Transmission Line and A Study of On-chip Two-element Integrated Phased Array
指導教授: 馬自莊
Tzyh-Ghuang Ma
口試委員: 楊成發
Chang-Fa Yang
廖文照
Wen-Jiao Liao
賴季暉
none
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 124
中文關鍵詞: 複合式左右手合成傳輸線雙模態操作整合被動元件異質整合系統威爾金森分波器變容二極體可重置天線
外文關鍵詞: IPD
相關次數: 點閱:320下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文包含兩項獨立研究主題。第一部份為「以相位可重置合成傳輸線實現場型重置天線」。首先,本論文提出一款相位可重置合成傳輸線,並引入變容二極體做為調整機制,藉由施加不同之逆向偏壓,可使該傳輸線段,於單一操作頻率下,表現為兩種迥異之電氣長度,並且維持良好之匹配與傳輸特性。
接著,吾人以此可重置傳輸線作為延伸,並整合威爾金森功率分配器,於單一操作頻率下,可實現功率等分,且具備同相/反相之輸出相位選擇。又,提出一款獨創之雙埠天線,配合該「可切換式功率分配器」,成功實現單頻場型可重置效能。經過實驗量測,充分驗證該天線可切換為全向性場型與指向性場型。
第二部份為「雙天線整合相位陣列之晶片化研究」。該整合系統於低頻帶操作為信號回溯陣列,而高頻帶則為波束切換陣列,此系統之功能切換,無須藉由任何主動元件,而是以一款獨創之雙模態響應合成傳輸線達成。若與前人所提出之數款整合相位陣列系統比較,此系統有效簡化異質整合系統之複雜饋入網路。又,引入整合被動元件晶片製程,可更進一步縮小面積,實現真正的電路微型化。再者,吾人將該微型化晶片以鎊線連接於印刷電路板進行量測,並得到良好電氣特性,可充分顯示其與電路板整合之潛力,有利於未來實現搭載於無線行動通訊裝置之目標。


This thesis consists of two independent researches. In the first part, a pattern reconfigurable antenna using phase reconfigurable synthesized transmission line (PR-STL) is proposed. The phase reconfigurable STL, whose electrical length can be switched between two states, while characteristic impedance remains in a fixed value, can function as a 1-bit phase switch; it is then loaded at the output of a wilkinson power divider to achieve a switchable output phase.
On the other hand, a two-port antenna is also designed. The novelty is that, with its unique structure, the radiation mechanism of the antenna is a combination of dipole and monopole antenna. Furthermore, by integrated the two-port antenna with the switchable power divider, a pattern reconfigurable antenna is then developed. The experiment results verify the proposed antenna can switch between an omnidirectional and directional pattern.
Secondly, a on-chip two-element integrated phased array using integrated passive device (IPD) process is studied. The integrated network is operated as a retro-directive array (RDA) at lower operating frequency, and a beam-switching phased array at higher operating frequency. This dual-mode network is realized by using a novel composite right/left-handed synthesized transmission lines, whose characteristic impedance and phase can be independently designed at two arbitrarily chosen frequencies. Moreover, the IPD process is introduced to achieve remarkable circuit miniaturization. Measured responses is comparable to that previously fabricated on printed circuit board (PCB).

摘要 I Abstract III 誌謝 V 目錄 VII 圖目錄 IX 表目錄 XIII 第一章 緒論 1 1.1 研究動機與目的 1 1.2 文獻探討 3 1.3 研究貢獻 6 1.4 論文組織 7 第二章 相位可重置合成傳輸線 8 2.1 前言 8 2.2 設計原理 9 2.3 相位可重置合成傳輸線之設計 12 2.3.1 設計範例 12 2.3.2 電路布局 13 2.3.3 相位可重置合成傳輸線之響應分析 16 2.4 結語 20 第三章 場型可重置天線 21 3.1 前言 21 3.2 電路架構與設計原理 21 3.2.1 設計原理 21 3.2.2 天線單元設計 21 3.2.3 饋入網路架構 28 3.3 場型可重置天線 33 3.3.1 整合電路佈局 33 3.3.2 量測與驗證 34 3.4 結語 39 第四章 以整合被動元件製程實現整合信號回溯/波束切換相位陣列之微型化晶片 41 4.1 前言 41 4.2 矽基板整合被動元件製程 42 4.3 電路架構與設計原理 43 4.3.1 整合信號回溯/波束切換相位陣列 43 4.3.2 電路架構 44 4.4 構成元件與其晶片製程實現 47 4.4.1 複合式左右手合成傳輸線 47 4.4.2 雙模態耦合器 63 4.4.3 雙工器 68 4.4.4 反射式終端 81 4.4.5 電路佈局 87 4.5 模擬與量測結果 89 a. On wafer量測 89 b. On PCB量測 93 4.6 結語 99 第五章 結論 100 5.1 總結 100 5.2 未來發展 100 參考文獻 102

[1] J.-Y. Zou, C. H. Wu, and T.-G. Ma, “Heterogeneous integrated beam-switching/retrodirective array using synthesized transmission lines,” IEEE Trans. Microw. Theory Tech., vol. 61, no. 8, pp. 3128-3139, Aug. 2013.
[2] J.-W. Tsai, C.-H. Wu, and T.-G. Ma, "Novel dual-mode retrodirective array using synthesized microstrip lines," IEEE Trans. Microw. Theory Tech., vol. 59, no. 12, pp. 3375-3388, Dec. 2011.
[3] Cheng-Hsun Wu, Guan-Ting Zhou, and Tzyh-Ghuang Ma, “Integrated Retrodirective/Beam-switching Phased Array Using Dual-mode Left-handed Synthesized Transmission Lines,” in Proc. 2014 IEEE Int’l Workshop on Electromagnetics, Applications and Student Innovation (iWEM), Hokkaido, Japan, Aug. 4-6, 2014.
[4] 張立, 以複合式左右手合成傳輸線實現雙天線整合信號回溯/波束切換相位陣列天線, 國立台灣科技大學電機工程研究所, 碩士論文, 民國104.
[5] C.H. Lai, C.-Y. Shiau, and T.-G. MA, “Tri-mode heterogeneous integrated beam-switching/Van Atta/phase-conjugating array using synthesized transmission lines,” IEEE Trans. Microw. Theory Tech., vol. 62, no. 9, pp. 2180-2192, Sep. 2014
[6] S. Nikalaou, R. Bairavasubramanian, C. Lugo, I. Carrasquillo, D. C. Thompson, G. E. Ponchak, J. Papapolymerou, and M. M. Tentzeris, “Pattern and frequency reconfigurable annular slot using PIN diodes,” IEEE Trans. Antennas Propag., vol. 54, no. 2, pp. 439–447, Feb. 2006.
[7] M. S. Alam, and A. Abbosh, “Planar pattern reconfigurable antenna with eight switchable beams for WiMax and WLAN applications,” IET Microw. Antennas and Propag., vol. 10, iss. 10, pp. 1030-1035, Jan. 2016
[8] P. Y. Qin, Y. J. Guo, and C. Ding, “A Beam Switching Quasi-Yagi Dipole Antenna,” IEEE Trans. on Antennas and Propag., vol. 61, no. 10, pp. 4891-4899, Oct. 2013
[9] M. H. Nemati, R. Kazemi, and I. Tekin, “Pattern reconfigurable patch array for 2.4 GHz WLAN systems,” Microw. Opt. Technol. Lett., 2014, 56, pp. 2377–2381
[10] Z. Li, E. Ahmed, and A. M. Eltawil, “A Beam-Steering Reconfigurable Antenna for WLAN Applications,” IEEE Trans. on Antennas and Propag., vol. 63, no. 1, pp. 24-32, Jan 2015
[11] M. Donelli, R. Azaro, L. Fimognari, and A. Massa, “A Planar Electronically Reconfigurable Wi-Fi Band Antenna Based on a Parasitic Microstrip Structure,” IEEE Antennas and Wireless Propag. Lett., vol. 6, pp. 623-626, Jan 2007
[12] G. H. Huff, and J. T. Bernhard, “Integration of Packaged RF MEMS Switches With Radiation Pattern Reconfigurable Square Spiral Microstrip Antennas,” IEEE Trans. on Antennas and Propag., vol. 54, no. 2, pp. 464-469, Feb 2006
[13] G. Lovat, P. Burghignoli, and S. Celozzi, “A Tunable Ferroelectric Antenna for Fixed-Frequency Scanning Applications,” IEEE Antennas and Wireless Propag. Lett., vol. 5, pp. 353-356, 2006
[14] Y. Yashchyshyn, and J. W. Modelski, “Rigorous Analysis and Investigations of the Scan Antennas on a Ferroelectric Substrate,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 2, pp. 427-438, Feb. 2005
[15] C.H. Lai, Y. C. Tseng, and T. G. Ma, “Novel Synthesized Microstrip Line with Controllable Transmission Zeros for Harmonic Suppressions,” Asia-Pacific Microwave Conference 2010
[16] C.H. Lai, and T. G. Ma, “Novel Synthesized Microstrip Line with Quasi-Elliptic Response for Harmonic Suppressions,” IEEE MTT-S International Microw. Symposium 2010
[17] J. Y. Zou, C. H. Wu, and T. G. Ma, “Miniaturized Diplexer Using Synthesized Microstrip Lines With Series LC Tanks,” IEEE Microw. and Wireless Compon. Lett., vol. 22, no. 7, pp. 354-356, July 2012
[18] K. C. Lin, C. H. Wu, and C. H. Lai, and T. G. Ma, “Novel Dual-Band Decoupling Network for Two-Element Closely Spaced Array Using Synthesized Microstrip Lines,” IEEE Trans. Antennas Propaga., vol.60, no.11, pp. 5118-5128, Nov. 2012.
[19] 謝廷, 以可重置合成傳輸線實現單頻整合信號回溯/波束切換相位陣列, 國立台灣科技大學電機工程研究所, 碩士論文, 民國105
[20] K. Liu and R. C. Frye, “Small form-factor integrated passive devices for SiP applications,” in 2007 IEEE MTT-S Int. Microw. Symp. Dig., pp. 2117–2120, Jun. 2007
[21] R. C. Fyre, K. Liu, and Y. Lin, “Three-stage bandpass filters implemented in silicon IPD technology using magnetic coupling between resonators,” in 2008 IEEE MTT-S Int. Microw. Dig., pp.783–786, Jun. 2008.
[22] Y. Li, C. Wang and N.-Y. Kim, “An optimized process of high-performance integrated passive devices (IPDs) on Si-GaAs Substrate for RF applications,” in 2013 Asia-Pacific Microw. Conf. Proc., pp. 116–118, Nov. 2013.
[23] C.-W. Wang, K.-H. Li, C.-J. Wu, and T.-G. Ma, “A miniaturized Wilkinson power divider with harmonic suppression characteristics using planar artificial transmission lines,” in 2007 Asia-Pacific Microw. Conf. Proc., pp. 1–4,Dec. 2007.
[24] H.-W. Hsu, C.-H. Lai, and T.-G. Ma, “A miniaturized dual-mode ring bandpass filter,” in IEEE Microw. Wireless Compon. Lett., vol. 20, no. 10, pp. 542–544, Oct. 2010.
[25] C.-W. Wang, T.-G. Ma, and C.-F. Yang, “A new planar artificial transmission line and its applications to a miniaturized Butler matrix,” in IEEE Trans. Microw. Theory Techn., vol. 55, no. 12, pp. 2792–2801, Dec. 2007
[26] Yo-Shen Lin, and Jun-Hua Lee, “Miniature Butler Matrix Design Using Glass-Based Thin-Film Integrated Passive Device Technology for 2.5-GHz Applications,” IEEE Trans. Microw. Theory Techn., vol.61,.no7,July 2013.
[27] C.H. Lai, G.-T. Zhou, and T.-G. MA, “On-Chip Miniaturized Diplexer Using Jointed Dual-Mode Right-/Left-Handed Synthesized Coplanar Waveguides on GIPD Process,” IEEE Microw. and Wireless Compon. Lett., vol.24, no.4, April 2014.
[28] S.-C. Yen, and T.-H. Chu, “A Beam-Scanning and Polarization-Agile Antenna Array Using Mutually Coupled Oscillating Doublers,” IEEE Trans. Antennas Propaga., vol. 53, no. 12, pp. 4051-4057, Dec. 2005
[29] R. Vescovo, “Reconfigurability and Beam Scanning With Phase-Only Control for Antenna Arrays,” IEEE Trans. Antennas Propaga., vol. 56, no. 6, pp. 1555-1565, June. 2008
[30] A. R. Dion, and L. J. Ricardi, “A variable-coverage satellite antenna system, ” Proc. IEEE, vol. 59, no. 2, pp. 252-262, Feb. 1971
[31] C.-C. Chang, R.-H. Lee, and T.-Y. Shih, “Design of a beam switching/steering Butler matrix for phased array system,” IEEE Trans. Antennas Propaga., vol. 58, no. 2, pp. 367-374, Feb. 2010.
[32] S. J. Chung, S. M. Chen and Y. C. Lee, “A novel bi-directional amplifier with applications in active Van Atta retrodirective arrays,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 2, pp. 542-547, Feb. 2003.
[33] S. N. Hsieh and T. H. Chu, “Linear Retro-directive array antenna using 90° hybrids,” IEEE Trans. Antennas Propaga., vol. 56, no. 6, pp. 1573-1580, Jun. 2008
[34] Y. Li and V. Jandhyala, “Design of retrodirective antenna arrays for short-range wireless power transmission,” IEEE Trans. Antennas Propaga., vol. 60, no. 1, pp. 206-211, Jan. 2012.
[35] Y.-J. Ren and K. Chang, “New 5.8-GHz circularly polarized retrodirective rectenna arrays for wireless power transmission,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 7, pp. 2970-2976, Jul. 2006.
[36] L. Chiu, Q. Xue, and C. H. Chan, “Phase-conjugated arrays using low conversion-loss resistive phase-conjugating mixers and stub-loaded patch antennas,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 8, pp.1764-1773, Aug. 2008.
[37] S. C. Yen and T. H. Chu, “Retro-directive array antenna with phase conjugation circuit using sub-harmonically injection-locked self-oscillating mixers,” IEEE Trans. Antennas Propaga., vol. 52, no. 1, pp. 154-164, Jan. 2004.
[38] R. Y. Miyamoto, Y. Qian, and T. Itoh, “An active integrated retrodirective transponder for remote information retrieval-on-demand,” IEEE Trans. Microw. Theory Tech., vol. 49, no.9, pp. 1658-1662, Sept. 2001.
[39] R. Y. Miyamoto and T. Itoh, “Retrodirective arrays for wireless communications,” IEEE Microw. Mag., vol. 3, pp. 71–79, Mar. 2002.
[40] T. N. Kaifas, and J. N. Sahalos, “On the design of a single-layer wideband Butler matrix for switched-beam UMTS system applications,” IEEE Antennas Propaga. Mag., vol. 48, no. 6, pp. 193-204, Dec. 2006.
[41] P. Chen, W. Hong, Z. Kuai, and J. Xu, “A Double Layer Substrate Integrated Waveguide Blass Matrix for Beamforming Applications,” IEEE Trans Microw. Wireless Compon. Lett., vol.19, no.6, pp. 374-376, Jun. 2009.
[42] T. Djerafi, N. J. G. Fonseca, and K. Wu, “Architecture and Implementation of Planar 4 × 4 Ku-Band Nolen Matrix using SIW Technology,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 2, pp. 259-266, Feb. 2010.
[43] S. Lim, K. M. K. H. Leong, and T. Itoh, “Adaptive power controllable retrodirective array system for wireless sensor server applications,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 12, pp. 3735–3743, Dec. 2005.
[44] S. C. Chen, Y. S. Wang, and S. J. Chung, “A Decoupling Technique for Increasing the Port Isolation Between Two Strongly Coupled Antennas,” IEEE Trans. Antennas Propaga., vol.56, no.12, pp. 3650-3658, Dec. 2008.
[45] I. H. Lin, M. DeVincentis, C. Caloz, and T. Itoh, “Arbitrary Dual-Band Components Using Composite Right/Left-Handed Transmission Lines,” IEEE Trans. Microw. Theory Tech., vol. 52, no.4, pp.1142-1149, Apr. 2004.
[46] A. Lai, T. Itoh, and C. Caloz, “Composite Right/Left-Handed Transmission Line Metamaterials,” IEEE Microw. Mag., vol. 5, pp.34–50, Sep. 2004.
[47] E. Öjefors, S. Cheng, K. From, I. Skarin, P. Hallbjörner, and A. Rydberg, “Electrically Steerable Single-Layer Microstrip Traveling Wave Antenna With Varactor Diode Based Phase Shifters,” IEEE Trans. Antennas Propaga., vol.55, no.9, pp. 2451-2460, Sep. 2007.
[48] Datasheet of Tuning Varactors SMV2020-079LF [Online]. Available: http://www.skyworksinc.com/Product/792/SMV2020-079LF
[49] D. M. Pozar, Microwave Engineering, 3rd ed. Wiley, 2005

QR CODE