簡易檢索 / 詳目顯示

研究生: 黎禹婕
Yu-Chieh Li
論文名稱: 新型高填充率與高徑比之雙曲率微透鏡應用於提升有機發光二極體發光效能之研究
The Study of New High Fill Factor and High Ratio Dual-curvature Microlens Apply to Enchance Luminace Efficiency of Organic Light Emitting Diodes
指導教授: 趙振綱
Ching-kong Chao
林宗鴻
Tsung-hung Lin
口試委員: 張瑞慶
Rwei-ching Chang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 91
中文關鍵詞: 有機發光二極體雙曲率微透鏡高填充率高徑比
外文關鍵詞: organic light emitting light diode, dual-curvature microlens, high fill factor, height ratio
相關次數: 點閱:196下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一種六角形結合四角形的新型雙曲率微透鏡陣列,應用於提升有機發光二極體(OLED)之發光效能。首先利用光學軟體(TracePro)進行分析,比較六角形、六角形結合三角形、八角形結合四角形和六角形結合四角形微透鏡陣列對OLED發光效能之提升,變異參數包括高徑比、直徑和高度。結果顯示在高徑比0.2時,軸向光強為六角形結合四角形>六角形結合三角形>八角形結合四角形>六角形;高徑比0.4時,六角形結合三角形>六角形>六角形結合四角形>八角形結合四角形;高徑比0.6時,八角形結合四角形>六角形>六角形結合四角形=六角形結合三角形;高徑比0.8時,則八角形結合四角形>六角形>六角形結合四角形>六角形結合三角形,由此可知新型雙曲率微透鏡在低高徑比時佔有優勢。另外,直徑為120μm的微透鏡陣列在相同面積下,由於顆數較多,相較於直徑150μm和180μm,可得到更佳的軸向光強增益。
    實驗部分,本研究先採用熱融法製作帶有間隙的微透鏡陣列,再藉由重複旋塗法,以達到高填充率的微透鏡陣列模型,接著透過PDMS翻模,即得到高徑比為0.1的六角形結合四角形微透鏡陣列薄膜。最後將製作完成之薄膜用光學顯微鏡、掃描式電子顯微鏡和三維表面輪廓儀作量測,以確認製作的雙曲率微透鏡之外型。


    The study has presented a new type of dual-curvature microlens array which shapes is composed of square and hexagon. It is used to enhance the luminous efficacy of organic light emitting diode (OLED).
    At first, the optical software was used to simulation in order to compare the microlens array of enhanced the luminous efficacy of OLED. The lens shapes include hexagon, composed of hexagon and triangle, composed of octagon and square and composed of hexagon and square. The variability of parameters include high aspect ratio, diameter and height. The results showed the relation of height ratio and luminance. The height ratio is 0.2 : 6+4 > 6+3 > 8+4 > 6; the height ratio is 0.4 : 6+3 > 6 > 6+4 > 8+4; the height ratio is 0.6 : 8+4 > 6 > 6+4 = 6+3; the height ratio is 0.8 : 8+4 > 6 > 6+4 > 6+3. Thus, the new type of dual-curvature microlens array had advantage in lower height ratio. Otherwise, the luminous efficacy of the 120μm diameter was better than other in the same area because of more microlens.
    In the experiment, the photoresist reflow was used to fabricate the microlens array with gap. Next, by repeating the spin coating method, the gapless microlens array mold was finished. Then, the film of the high fill factor microlens array could be obtained through the PDMS mold. Moreover, its height ratio is 0.1. Finally, the measurement of microlens array utilized optical microscopic, scanning electron microscope and 3D profiler in order to confirm geometry contour and size.

    摘 要 ABSTRACT 誌 謝 目 錄 圖目錄 表目錄 第一章 緒論 1.1有機發光二極體之簡介 1.1.1有機發光二極體之結構 1.1.2有機發光二極體之發光原理 1.2 有機發光二極體之發光效率 1.3 增加外量子效率的方法 1.3.1減少不發光模式 1.3.2減少波導效應 1.3.3減少全反射 1.4微透鏡陣列附加於有機發光二極體之應用 1.5微透鏡之介紹 1.5.1微透鏡種類 1.5.2微透鏡製作方法 1.6研究動機與目的 1.7論文架構 第二章 理論 2.1 光源 2.2反射定律與折射定律 2.2.1反射定律 2.2.2折射定律(斯奈爾定律Snell's Law) 2.3光度學單位 2.3.1光通量(Luminous Flux) 2.3.2發光強度(Luminous Intensity) 2.3.3光強度-輝度(Luminance) 2.4高徑比 2.5微透鏡熱熔 第三章 微透鏡之光學模擬介紹 3.1光學模擬軟體TracePro介紹 3.2模擬程序規劃 3.3 TracePro光學模擬之操作流程 3.4光學模擬 3.4.1微透鏡之模型建立 3.4.2有機發光二極體之模型建立 3.4.3有機發光二極體之光源定義 3.4.4 分析模組之介紹 3.5 資料輸出之選定 3.6 模型驗證(分析光線數之測定) 3.7微透鏡之結構設計與參數變異 3.8 模型之參數設計 第四章 實驗製程 4.1雙曲率微透鏡之製作 4.2 光罩設計 4.3實驗檢測之儀器 第五章 模擬和實驗之結果與討論 5.1光學模擬之結果 5.1.1 不同高徑比透鏡之影響 5.1.2 不同透鏡直徑(顆數)之影響 5.2 模擬結果之討論 5.3雙曲率微透鏡陣列實驗之結果 5.4實驗結果之討論 第六章 結論與未來展望 6.1 結論 6.2 未來展望 參考文獻

    [1] 陳金鑫、黃孝文, OLED:有機電激發光材料與元件, 五南出版社(2005).
    [2] 陳璽安, “Study of composite emitter with graded-connecting layer in organic light-emitting diodes”, 國立交通大學顯示科技研究所, 碩士論文(2012).
    [3] H. Y. Lin, Ho, Y. H., Lee, J. H., Chen, K.Y., Fang, J. H., Hsu, S. C., Wei, M. K., Lin, H. Y., Tsai, J.H., and Wu, T. C., "Patterned microlens array for efficiency improvement of small-pixelated organic light-emitting devices", Opt. Express, vol. 16, pp. 11044-11051 (2008).
    [4] K. H. Liu, M. F. Chen, C. T. Pan, M. Y. Chang, W. Y. Huang, “Fabrication of various dimensions of high fill-factor micro-lens arrays for OLED package”, Sensors and Actuators A 159, 126–134 (2010).
    [5] C. T. Pan, Y. C. Chen, M. F. Chen, Y. C. Hsu, “Fabrication and design of various dimensions of multi-step ashperical microlens arrays for OLED package”, Optics Communications 284 , 3323-3330 (2011).
    [6] T. H. Lin, H. Yang, C. K. Chao, H. C. Shui, “New dual-curvature microlens array with high fill-factor for organic light emitting diode modules”, 25-27 (2012).
    [7] F. Galeotti, W. Mroz, G. Scavia, C. Botta, “Microlens arrays for light extraction enhancement in organic light-emitting diodes: A facile approach”, Organic Electronics 14 , 212–218 (2013).
    [8] Liu, 微機電系統原理與應用, 高立圖書有限公司 (2006).
    [9] C. T. Pan, C. H. Su, “Fabrication of gapless triangular micro-lens array”, Sensors and Actuators A 134 , 631–640 (2007)
    [10] H. Yang, C. P. Linz, C. K. Chao, C. T. Pad, “Hexagonal microlens array fabricated by proximity printing via uv lithography”, Cannes-Mandelieu, 5-7 (2003).
    [11] C. T. Pan, M. F. Chen, P. J. Cheng, Y. M. Hwang, S. D. Tseng, J. C. Huang, “Fabrication of gapless dual-curvature microlens as a diffuser for a LED package”, Sensors and Actuators A 150, 156–167 (2009)
    [12] T. H. Lin, H. Yang, C. K. Chao, “New high fill-factor triangular micro-lens array fabrication method using UV proximity printing”, DTIP of MEMS & MOEMS, 9-11 (2008).
    [13] S. S. Oh, C. G. Choi, Y. S. Kim, “Fabrication of micro-lens arrays with moth-eye antireflective nanostructures using thermal imprinting process”, Microelectronic Engineering 87, 2328–2331 (2010) .
    [14] Zoran D. Popovic, Robert A. Sprague, and G. A. Neville Connell, ” Technique for monolithic fabrication of microlens arrays”, Appl. Opt., Vol. 27, No. 7 (1988).
    [15] J. M. Kang, M. K. Wei, H. Y. Lin, J. H. Lee, H. Y. Lin, J. H. Tsai, T. C. Wu, “Shape-controlled microlens arrays fabricated by diffuser lithography”, Microelectronic Engineering 87, 1420–1423 (2010).
    [16] J. C. Tsai, Y. S. Hsu, “Profile of microlens fabricated by the thermal reflow process”, IEEE TRANSACTIONS ON MAGNETICS, VOL. 47, NO. 3 (2011).
    [17] H. Zhang, L. Li, D. L. McCray, D. Yao, A. Y. Yi, “A microlens array on curved substrates by 3D micro projection and reflow process”, Sensors and Actuators A 179 , 242– 250 (2012).
    [18] 可見光, 維基百科, http://zh.wikipedia.org/wiki/%E5%8F%AF%E8%A7%81%E5%85%89.
    [19] 初醒悟, 照明設計, http://blog.alighting.cn/1266/archive/2012/10/5/291596.html (2012).
    [20] 耿繼業、何建娃, 幾何光學, 全華圖書股份有限公司 (2010).
    [21] 胡國文, 民用建築電器技術與設計, 清華大學出版社, 北京 (2005).
    [22] 楊建人, 光學原理, 徐氏基金會 (1996).
    [23] EEFOCUS, http://www.eefocus.com/book/.
    [24] 愛發股份有限公司, http://www.apic.com.tw/introproduct.php?i=98.
    [25] M. K. Wei, Lin, H. Y., Lee, J. H., Chen, K. Y., Ho, Y. H., Lin, C. C., Wu, C. F., Lin, H. Y., Tsai, J. H. and Wu, T. C. and "Efficiency improvement and spectral shift of an organic light-emitting device with a square-based microlens array", Optics Communications, vol. 281, pp. 5625-5632 (2008).
    [26] 材料世界網, http://www.materialsnet.com.tw/.
    [27] 材料世界網, http://www.materialsnet.com.tw/AD/ADImages/AAADDD/ MCLM100/d ownload/equipment/EM/FE-SEM/FE-SEM005.pdf.

    QR CODE