簡易檢索 / 詳目顯示

研究生: 鄭晟賢
Sheng-Hsien Cheng
論文名稱: 高性能週期性控制器應用於小直流鏈電容永磁同步電動機驅動系統的研製
Implementation of Periodic Controllers for High-Performance Small DC-Link-Capacitor PMSM Drive Systems
指導教授: 劉添華
Tian-Hua Liu
口試委員: 廖聰明
Chang-Ming Liaw
徐國鎧
Kuo-Kai Shyu
陳偉倫
Woei-Luen Chen
林長華
Chang-Hua Lin
劉添華
Tian-Hua Liu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 147
中文關鍵詞: 小薄膜電容分數延遲週期性控制主動阻尼補償永磁同步電動機
外文關鍵詞: small-film capacitor, fractional-delay periodic controller, active damping compensation, permanent magnet synchronous motor
相關次數: 點閱:177下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文探討三相金屬小薄膜電容驅動內藏式永磁同步電動機系統的研製。為了降低電路成本、節省空間、及延長使用壽命,本文將440 F的電解直流鏈電容更換為10 F 的金屬小薄膜電容。然而,小薄膜電容導致直流鏈電壓劇烈變動,造成輸入側電流高頻諧波增大,功因變差。
文中,探討使用一階高通濾波器與五階帶通濾波器的主動阻尼補償控制,以便改善輸入側電流波形及輸入功因,並進行比較。
本文亦探討分數型週期性速度控制器與最佳週期性電流控制器取代傳統比例-積分控制器。藉以提升閉迴路驅動系統的動態響應,以及抑制電動機的三相電流諧波。
本文使用德州儀器公司所生產的數位訊號處理器,編號為TMS320F28035,作為驅動系統的控制核心,實驗結果說明本文所提方法的可行性及正確性。


This thesis investigates the design and implementation of a three-phase metallized small-film capacitor-based interior permanent-magnet synchronous motor (IPMSM) drive system. In order to reduce cost, save space, and extend capacitor’s life, a 10?? metallized small-film capacitor is used to replace the 440?? DC-link electrolytic capacitor. However, by using of the small-film capacitor, large variations are produced in the DC-link voltage, which cause a lot of input current harmonics and deteriorate input power factor. A 1st -order high-pass filter and a 5th -order bandpass filter are used and compared for the active damping compensator to improve the input AC current waveforms and input power factor.
In addition, this thesis investigates using a fractional periodic speed controller and an optimal periodic current controller to replace the traditional PI controllers as well. By using the periodic controllers, both dynamic responses and three-phase current harmonics of the IPMSM are improved.
A digital signal processor, TMS-320F28035, manufactured by Texas Instruments, is used as a control center for the proposed drive system. Experimental results show the feasibility and correctness of the proposed methods.

中文摘要 I Abstract II 目錄 III 圖目錄 VI 表目錄 XI 符號索引 XII 第一章 緒論 1 1.1背景 1 1.2文獻回顧 3 1.3動機 5 1.4論文大綱 6 第二章 內藏式永磁同步電動機 7 2.1 前言 7 2.2 結構與特性 7 2.3 數學模型 12 第三章 小薄膜變頻器驅動系統 20 3.1 簡介 20 3.2 變頻器 21 IV 3.3 脈波寬度調變脈波寬度調變 .......................................................................................................................................................... 22 3.4 磁場導向控制磁場導向控制 .......................................................................................................................................................... 27 第四章 第四章 小薄膜電容驅動系統的阻尼控制及濾波器設計小薄膜電容驅動系統的阻尼控制及濾波器設計 ........................................ 29 4.1 簡介簡介 .......................................................................................................................................................................................... 29 4.2 阻尼控制阻尼控制 .......................................................................................................................................................................... 31 4.3 主動濾波器設計主動濾波器設計方法方法.................................................................................................................................. 39 第五章 第五章 週期性週期性控制器設計控制器設計 ........................................................................................................................................ 50 5.1 簡介簡介 .......................................................................................................................................................................................... 50 5.2 週期性速度控制器設計週期性速度控制器設計 ........................................................................................................................ 51 5.2.1傳統週期性速度迴路控制器傳統週期性速度迴路控制器........................................................................................ 51 5.2.2分數型週期性分數型週期性速度迴路速度迴路控制器控制器 .............................................................................. 57 5.3 週期性電流週期性電流控制器控制器.......................................................................................................................................... 66 第六章 第六章 系統研製系統研製 ........................................................................................................................................................................ 76 6.1 前言前言 .......................................................................................................................................................................................... 76 6.2硬體電路硬體電路 ............................................................................................................................................................................ 77 6.2.1三相全波整流器三相全波整流器 ................................................................................................................................ 78 6.2.2電電壓壓偵測電路偵測電路 ........................................................................................................................................ 78 6.2.3電電流流偵測電路偵測電路 ........................................................................................................................................ 79 6.2.4變頻器變頻器 ................................................................................................................................................................ 80 V 6.2.5過電壓保護電路過電壓保護電路 ................................................................................................................................ 81 6.2.6過電過電流流保護電路保護電路 ................................................................................................................................ 82 6.2.7編碼器電路編碼器電路 ................................................................................................................................................ 83 6.2.8閘極驅動閘極驅動電路電路 ........................................................................................................................................ 84 6.2.9電源供應電路電源供應電路 ........................................................................................................................................ 85 6.2.10數位訊號處理器數位訊號處理器 ............................................................................................................................ 87 6.3軟體程式軟體程式 ............................................................................................................................................................................ 89 6.3.1 主程式主程式 .............................................................................................................................................................. 89 6.3.2 中斷副程式中斷副程式 .............................................................................................................................................. 91 第七章 第七章 實測結果實測結果 ........................................................................................................................................................................ 93 7.1 前言前言 .......................................................................................................................................................................................... 93 7.2 實測實測 .......................................................................................................................................................................................... 95 第八章 第八章 結論及未來研究方向結論及未來研究方向 ............................................................................................................................ 119 參考文獻 參考文獻 .................................................................................................................................................................................................. 120

[1] A. Consoli, G. Scarcella, and A. Testa, ‘‘Industry application of zero-speed sensorless control of techniques for PM synchronous motors, ’’ IEEE Transactions on Industry Applications, vol. 37, no. 2, pp. 513-521, Mar./Apr. 2001.
[2] P. Stewart and V. Kadirkamanathana, ‘‘Commutation of permanent-magnet of synchronous AC motors for military and traction applications, ’’ IEEE Transactions on Industry Applications, vol. 50, no. 3, pp. 629-630, June 2003.
[3] X. Diao, H. Zhu, Y. Qin and Y. Hua, ‘‘Torque ripple minimization for bearingless synchronous motor, ’’ IEEE Transactions on Applied Superconductivity, vol. 28, no. 3, pp. 1-5, Apr. 2018.
[4] D. Ishak and Z. Q. Zhu and D. Howe, ‘‘Comparison of PM brushless motors, having either all teeth or wound, ’’ IEEE Transactions on Energy Conversion, vol. 21, no. 1, pp. 95-103, Mar. 2006.
[5] C. Zhang, L. Xu, X. Zhu, Y. Du and L. Quan, ‘‘Elimination of DC-link voltage ripple in PMSM drives with DC-split capacitor converter, ’’ IEEE Transactions on Power Electronics, vol. 36, no. 7, pp. 8141-8154, July 2021.
[6] G. Wang, H. Hu, D. Ding, N. Zhao, Y. Zou and D. Xu, ‘‘Overmodulation strategy for electrolytic capacitorless PMSM drives: voltage distortion analysis and boundary optimization, ’’ IEEE Transactions on Power Electronics, vol. 35, no. 9, pp. 9574-9585, Sep. 2020.
[7] V. Bist and B. Singh, ‘‘An adjustable-speed PFC bridgeless buck-boost converter-fed BLDC motor drive, ’’ IEEE Transactions on Industrial Electronics, vol. 61, no. 6, pp. 2665-2677, June 2014.
[8] S. Madishetti , B. Singh, and G. Bhunvaneswari, ‘‘ Three-level NPC-inverter-based SVM-VCIMD with feedforward active PFC rectifier for enhanced AC mains power quality, ’’IEEE Transactions on Industrial Electronics, vol. 61, no. 2, pp. 1895-1873, Mar./Apr. 2016.
[9] B. Akin and Z. Tang, ‘‘Suppression of dead-time distortion through revised repetitive controller in PMSM drives, ” IEEE Transactions Energy Converters, vol. 32, no. 3, pp. 918-930, Sep. 2017.
[10] K. Inazuma, H. Utsugi, K. Ohishi and H. Haga, ‘‘High-power-factor single-phase diode rectifier driven by repetitively controller IPM motor, ” IEEE Transactions on Industrial Electronics, vol. 60, no. 10, pp. 4427-4437, Oct. 2013.
[11] H. C. Chang and W. H. Kim, ‘‘Impedance reshaping for inherent harmonics in PMSM Drives with small DC-link capacitor, ” IEEE Transactions on Magnetics, vol. 37, no. 12, pp. 14265-14279, Dec. 2022.
[12] D. Ding, G. Zhang, G. Wang, Z. Ren, N. Mijatovic and D. Xu, ‘‘Suppression of beat phenomenon for electrolytic capacitorless motor drives accounting for sampling delay of DC-link voltage,’’ IEEE Transaction on Power Electronics, vol. 69, no. 1, pp. 1167-1176, Feb. 2022.
[13] N. Zhao, G. Wang, D. Xu, L. Zhu, G. Zhang and J. Huo, ‘‘Inverter power control based on DC-link voltage regulation for IPMSM drives without electrolytic capacitors,’’ IEEE Transaction on Power Electronics , vol. 33, no. 11, pp. 558-571, Jan. 2018.
[14] G. Wang, H. Hu, D. Ding, N. Zhao, Y. Zou and D. Xu, ‘‘Overmodulation strategy for electrolytic capacitorless PMSM drives: voltage distortion analysis and boundary optimization,’’ IEEE Transactions on Power Electronics, vol. 35, no. 9, pp. 9574-9585, Sep. 2020.
[15] Y. Yang, K. Zhou and W. Lu, ‘‘Robust repetitive control scheme for three-phase constant-voltage-constant-frequency with pulse-width-modulated inverters, ’’ IET Power Electronics., vol. 5, no. 6, pp. 669-667, Jan. 2021.
[16] M. Tomizuka , T. Tsao and K. K. Chew, ‘‘Analysis and synthesis of discrete-time repetitive controllers,’’ Journal of Dynamic Systems Measurements and Control-Transactions of The ASME, vol. 111, no. 53, pp. 353-358, Sep. 2011.
[17] S. Baek, Y. Cho and J. S. Lai, ‘‘Average periodic delay-based frequency adaptable repetitive control with a fixed sampling rate and memory of single-phase PFC converters,’’ IEEE Transactions on Power Electronics, vol. 36, no. 6, pp. 6572-6585, June 2021.
[18] W. Lee and S. Sul, ‘‘DC-link voltage stabilization for reduced DC-link capacitor inverter,’’ IEEE Transactions on Industry Applications, vol. 50, no. 1, pp. 404-414, Jan./ Feb. 2014.
[19] S. Kim, J. Lee and K. Lee, ‘‘Self-tunning adaptive speed controller for permanent magnet synchronous motor,’’ IEEE Transactions on Power Electronics, vol. 32, no. 2, pp. 1493-1506, Feb. 2017.
[20] Z. Wang, Z. Zou, K. Zhou and M. Cheng, ‘‘Frequency-adaptive fractional-order repetitive control of shunt active power filters,’’ IEEE Transactions on Industrial Electronics, vol. 62, no. 23 pp. 1659-1668, Oct. 2015.
[21] L. Hang, M. Zhang, L. M. Tolbert and Z. Lu, ‘‘Digitized feedforward compensation method for high-power-density three-phase Vienna PFC converter,’’ IEEE Transactions on Industrial Electronics, vol. 60, no. 4, pp. 1512-1519, Apr. 2013.
[22] B. Kedjar, H. Y. Kanaan and K. A. Haddad, ‘‘Vienna rectifier with power quality added function, ’’ IEEE Transactions on Industrial Electronics, vol. 61, no. 8, pp. 3847-3856, Aug. 2014.
[23] J. Huo, N. Zhao, R. Gao, G. Wang, G. Zhang and D. Xu, ‘‘Torque ripple compensation with anti-overvoltage for electrolytic capacitorless PMSM compressor drives,’’ IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 10, no. 5, pp. 6148-6159, Oct. 2022.
[24] X. Song, S. Zheng, B. Han, C. Peng and X. Zhou, “Active damping stabilization for high-speed BLDCM drive system based on band-pass filter,’’ IEEE Transaction on Power Electronics, vol. 32, no. 7, pp. 5438-5449, July 2017.
[25] Y. Shi, R. Li, Y. Xue and H. Li, “High-frequency-link-based grid-tied PV system with small DC-link capacitor and low-frequency ripple-free maximum power point tracking,’’ IEEE Transactions on Power Electronics, vol. 31, no. 1, pp. 328-339, Jan. 2016.
[26] Y. Zhang, Z. Yin, F. Gao and J. Liu, ‘‘ Research on anti-DC bias and high-order harmonics of a fifth-order flux observer for IPMSM sensorless drive,’’ IEEE Transaction on Industrial Electronics, vol. 69, no. 4, pp. 3393-3406, Apr. 2022.
[27] G. Wang, Reduced DC-link Capacitance AC Motor Drives, Springer, Singapore, 2020. [28] L. Wang, S. Chai, D. Yoo, L. Gan, and K. Ng, PID and Predictive Control of Electrical Drives and Power Converters Using MATLAB/Simulink, Wiley & Sons, Singapore, 2015.
[29] Y. Yang, K. Zhou, H. Wang, F. Blaabjerg, D. Wang, and B. Zhang, “Frequency adaptive selective harmonic control for grid-connected inverters,” IEEE Transaction Power Electronics., vol. 30, no. 7, pp. 3912–3924, July 2015.
[30] B. Zhang, D. Wang, K. Zhou, and Y. Wang, “Linear phase lead compensation repetitive control of a CVCF PWM inverter,” IEEE Transaction Power Electronics., vol. 55, no. 4, pp. 1595–1602, Apr. 2008.
[31] G. Escobar, P. G. H. Briones, P. R. Martinez, M. H. Gomez, and R. E. T. Olguin, “A repetitive-based controller for the compensation of harmonic components,” IEEE Transaction Power Electronics., vol. 55, no. 8, pp. 3150– 3158, Aug. 2008.
[32] W. Lu, K. Zhou, D. Wang, and M. Cheng, “A general parallel structure repetitive control scheme for multiphase DC-AC PWM converters,” IEEE Transaction Power Electronics, vol. 28, no. 8, pp. 3980–3987, Aug. 2013.
[33] K. Zhou, Y. Yang, F. Blaabjerg, and D. Wang, “Optimal selective harmonic control for power harmonics mitigation,” IEEE Transaction Power Electronics, vol. 62, no. 2, pp. 1220–1230, Feb. 2015.
[34] K. Zhou, D. Wang, Y. Yang and F. Blaabjerg, Periodic Control of Power Electronic Converters, The Institution of Engineering and Technology, London, UK, 2016.
[35] Z. Zou, K. Zhou, Z. Wang, and M. Cheng, “Fractional-order repetitive control of programmable AC power sources,” IET Power Electronics., vol. 7, no. 2, pp. 431–438, Aug. 2014.
[36] J. Miret, M. Castilla, J. Matas, J. M. Guerrero, and J. C. Vasquez, “Selective harmonic-compensation control for single-phase active power filter with high harmonic rejection,” IEEE Transaction Power Electronics., vol. 56, no. 8, pp. 3117–3127, Aug. 2009.

QR CODE