簡易檢索 / 詳目顯示

研究生: 王承慈
Cheng-Cih Wang
論文名稱: CMOS電壓控制振盪器與SiGe注入鎖定除頻器之研製
Implementation of CMOS Voltage-Controlled Oscillator and SiGe Injection-Locked Frequency Divider
指導教授: 莊敏宏
Miin-Horng Juang
張勝良
Sheng-Lyang Jang
口試委員: 徐敬文
Ching-Wen Hsue
徐世祥
Shih-Hsiang Hsu
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 94
中文關鍵詞: 電壓控制振盪器注入鎖定除頻器
外文關鍵詞: VCO, ILFD
相關次數: 點閱:244下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

壓控振盪器與除頻器是頻率合成器電路中主要的電路之一。對壓控振盪器而言,低相位雜訊可避免相鄰雜訊訊號經由混波轉換的干擾。而振盪器的輸出則經由除頻器來達成降頻的工作,因此,除頻器需具有高頻操作,寬的操作頻寬及低功率消耗。
第一部分我們提出一個新式的互補式金氧半電壓控制振盪器。此考畢子差動電壓控制振盪器使用台積電所提供之零點一八微米1P6M互補式金氧半電晶體製程所製造。它包含兩組單端考畢子振盪器,是由交錯耦合電晶體對來得到差動輸出。在使用1.45伏特的供應電壓下操作在8.69 GHz頻帶,而1 MHz偏移頻率下的相位雜訊為-119.2 dBc/Hz,且FOM為-190.2 dBc/Hz。整個電路功率消耗為5.99 mW。頻率從0到2.0伏特可調範圍為8.69到9.7 GHz,共1.01 GHz。
第二部分我們提出一個寬鎖定範圍之注入鎖定振盪器。此振盪器是使用台積電所提供之零點三五微米矽-鍺3P3M雙載子互補式金氧半電晶體製程所製造,且可以用來作為除三的注入鎖定除頻器。此除頻器包含一個交錯耦合LC振盪器與兩個注入雙極性電晶體。此注入電晶體與耦合互感可視為一個電壓對電壓的轉換器,提供一個注入電壓到混波器的入口。在1.2伏特的供應電壓下,自振工作頻率為6.8到7.43 GHz,而不包含緩衝電路的電流與功率消耗分別是9.4 mA與11.28 mW。在注入功率為0 dBm下,作為除三除頻器的總除頻範圍為20.3到23.1 GHz。


The key building blocks in the frequency synthesizer are the voltage-controlled oscillator (VCO) and the high frequency divider circuit. Most importantly, low phase-noise is required to avoid corrupting the mixer-converted signal by close interfering tones for VCO circuit. The output of the VCO is divided down by the frequency divider which requires operating at high frequencies, wide operating range, and lower power consumption.
The first part proposes a novel CMOS VCO. A gm-boosted complementary Colpitts differential VCO is proposed and implemented in a 0.18 μm CMOS 1P6M process. It consists of two single-ended p-core Colpitts oscillators via gm-enhanced cross-coupled Colpitts transistors to obtain a differential output. At the supply voltage of 1.45 V, the output phase noise of the differential VCO is -119.2 dBc/Hz at 1 MHz offset frequency from the carrier frequency of 8.69 GHz and the figure of merit is -190.2 dBc/Hz. Total VCO core power consumption is 5.99 mW. Tuning range is 1.01 GHz, from 8.69 to 9.7 GHz, while the control voltage was tuned from 0 to 2.0 V.
The second part proposes a wide locking range injection-locked frequency oscillator (ILO). The ILO is fabricated in the 0.35 μm silicon–germanium (SiGe) BiCMOS 3P3M technology, and it could be used as a divide-by-3 injection-locked frequency divider (ILFD). The divider consists of a heterojunction bipolar transistor (HBT) cross-coupled LC oscillator and two injection HBTs in series with the cross-coupled HBTs. The HBT injectors and coupling transformers are regarded a voltage-to-voltage convection device to supply injection voltage to one port of mixer’s input. At the supply voltage of 1.2 V, the free-running frequency is from 6.8 to 7.43 GHz, the current and power consumption of the divider without buffers are 9.4 mA and 11.28 mW, respectively. At the incident power of 0 dBm, the total operational locking range of the ILO used as a divide-by-3 frequency divider is from the incident frequency 20.3 to 23.1 GHz.

中文摘要 I Abstract III 誌 謝 V Table of Contents VI List of Figures VIII List of Tables XI Chapter 1 Introduction 1 1.1 Background 1 1.2 Thesis organization 3 Chapter 2 Overviews of Voltage-Controlled Oscillators and Injection Locked Frequency Divider 5 2.1 The Oscillator 5 2.1.1 Negative Resistance (NR) 5 2.1.2 Negative -gm Oscillators 8 2.1.3 Positive Feedback (PFB) 9 2.2 All Types of Oscillators 11 2.2.1 Ring Oscillator 11 2.2.2 LC-Tank Oscillator 14 2.3 Voltage-Controlled Oscillator 17 2.4 The Parameters of VCOs 18 2.4.1 Center Frequency 18 2.4.2 Tuning Range 18 2.4.3 Tuning Linearity 19 2.4.4 Output Amplitude 20 2.4.5 Power Dissipation 20 2.4.6 Supply and Common-Mode Rejection 20 2.4.7 Output Signal Purity 20 2.5 Phase noise 21 2.5.1 Definition of Phase Noise 21 2.5.2 Existing Models of Phase Noise 23 2.5.2.1 Time-invariant phase noise model 23 2.5.2.2 The Lesson’s model 23 2.5.3 Noise Sources 25 2.5.3.1 Thermal noise 26 2.5.3.2 Flicker noise 28 2.5.4 Phase Noise in Wireless Communication 29 2.5.5 Previous Models of Phase Noise 32 2.6 On-Chip Inductor Research 33 2.7 Varactor 41 2.7.1 P-N Junction Varactor 41 2.7.2 MOS Varactor 42 2.7.2.1 Accumulation-mode MOS varactor 44 2.7.2.2 Inversion-mode MOS varactor 45 2.8 Resistors 47 2.9 Principle of Injection Locked Frequency Divider 48 2.9.1 Locking Range 49 2.9.2 Switch ILFD 52 Chapter 3 CMOS Voltage-Controlled Oscillator with Two Colpitts Differential Negative Resistances 54 3.1 Introduction 54 3.2 Circuit Design 55 3.3 Measurement Results 59 Chapter 4 A SiGe Injection-Locked-Oscillator Using HBT Injector Operated in Saturation Region 63 4.1 Introduction 63 4.2 Circuit Design 65 4.3 Measurement Results 67 Chapter 5 Conclusion 74 References 76

[1] B. Razavi, RF Microelectronics, Prentice Hall PTR, 1998.
[2] P.-C. Huang, M.-D. Tsai, H. Wang, C.-H. Chen, and C.-S. Chang, “A 114GHz VCO in 0.13μm CMOS technology,” IEEE International Solid-State Circuits Conference, vol. 1, pp. 404-606, Feb. 2005.
[3] B. Razavi, Design of Analog CMOS Integrated Circuits, Mc Graw Hill, 2001.
[4] T. H. Lee, The Design of CMOS Radio Frequency Integrated Circuits, Cambridge University Press 1998.
[5] J. Craninckx and M. S. J. Steyaert, “A 1.8-GHz low-phase-noise CMOS VCO using optimized hollow spiral inductors,” IEEE Journal of Solid-State Circuits, vol. 32, pp. 736-744, May 1997.
[6] H. M. Greenhouse, “Design of planar rectangular microelectronic inductors,” IEEE Transactions on Parts, Hybrids, and Packaging, vol. 10, pp. 101-109, Jun. 1974.
[7] P. Yue, C. Ryu, J. Lau, T. Lee, and S. Wong, “A physical model for planar spiral inductors on silicon,” 1996 International Electron Devices Meeting Technical Digest, pp. 155-158, Dec. 1996.
[8] T. Soorapanth, C. P. Yue, D. K. Shaeffer, T. H. Lee, and S. S. Wong, “Analysis and optimization of accumulation-mode varactor for RF ICs,” in 1998 Symp. VLSI Circuits Dig. Tech. Papers, pp. 22-23. Jun. 1998.
[9] H. R. Rategh and T. H. Lee, “Superharmonic injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 34, no. 6, pp. 813-821, June 1999.
[10] W. Z. Chen and C. L. Kuo, “18 GHz and 7 GHz superharmonic injection-locked dividers in 0.25pm CMOS technology,” IEEE European Solid State Circuits Conference (ESSCIRC), pp. 89-92, Sept. 2002.
[11] B. Razavi, “A study of injection locking and pulling in oscillator,” IEEE J. Solid-State Circuits, vol. 39, no. 9, pp. 1415-1424, 2004.
[12] R. Adler, “A study of locking phenomena in oscillators,” Proc. IEEE, vol. 61, pp.1380-1385, Oct. 1973.
[13] A. Hajimiri and T. Lee, “Design issues in CMOS differential LC oscillators,” IEEE J. Solid-State Circuits, vol. 34, no. 5, pp. 717–724, May 1999.
[14] D. Baek, S. Ko, J.-G. Kim, D.-W. Kim, and S. Hong, “Ku-band InGaPGaAs HBT MMIC VCOs with balanced and differential topologies,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 4, pp. 1353–1359, Apr. 2004.
[15] S.-L. Jang, C.-C. Liu, C.-Y. Wu, and M.-H. Juang, “A 5.6GHz low power balanced VCO in 0.18 μm CMOS,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 4, pp. 233–235, Apr. 2009.
[16] R. Aparicio and A. Hajimiri, “A noise-shifting differential Colpitts VCO,” IEEE J. Solid-State Circuits, vol. 12, no. 12, pp. 1728–1736, Dec. 2002.
[17] X. Li, S. Shekhar, and D. J. Allstot, “Gm-boosted common-gate LNA and differential Colpitts VCO/QVCO in 0.18-μm CMOS,” IEEE J. Solid-State Circuits, vol. 40, no. 12, pp. 2609–2619, Dec. 2005.
[18] M.-D. Tsai, Y.-H. Cho, and H. Wang, “A 5-GHz low phase noise differential Colpitts CMOS VCO,” IEEE Microwave Wireless Compon. Lett., vol. 15, no. 5, pp. 327–329, May 2005.
[19] C.-Y. Cha and S.-G. Lee “A complementary Colpitts oscillator in CMOS technology,” IEEE Trans. Microw. TheoryTech., vol. 53, no. 3, pp. 881– 887, Mar. 2005.
[20] S.-L. Jang, C.-F. Lee, and C.-W. Chang , “A K-band differential Colpitts cross-coupled VCO in 0.13 μm CMOS,” Solid-State Electron., vol. 53, no. 9, pp. 931–934, Sept. 2009.
[21] D. Ham and A. Hajimiri, “Concepts and methods in optimization of integrated LC VCOs,” IEEE J. Solid-State Circuits, vol. 36, no. 6, pp. 896–909, Jun. 2001.
[22] J. Kim, J.-O. Plouchart, N. Zamdmer, R. Trzcinski, K. Wu, B. J. Gross, and M. Kim, “A 44 GHz differentially tuned VCO with 4 GHz tuning range in 0.12 μm SOI CMOS,” IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, 2005, pp. 416–417.
[23] J.-P. Hong and S.-G. Lee, “Low phase noise Gm-boosted differential gate-to-source feedback Colpitts CMOS VCO,” IEEE J. Solid-State Circuits, vol. 44, no. 11, pp. 3079–3091, June 2009.
[24] J.-A. Hou and Y.-H. Wang, “A 5 GHz differential Colpitts CMOS VCO using the bottom PMOS cross-coupled current source,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 6, pp. 401–403, Nov. 2009.
[25] A. Rylyakov and T. Zwick, “96-GHz static frequency divider in SiGe bipolar technology,” IEEE J. Solid-State Circuits, vol. 39, no. 10, pp. 1712-1715, Oct. 2004.
[26] A. Rylyakov, L. Klapproth, B. Jagannathan, and G. Freeman, “100 GHz dynamic frequency divider in SiGe bipolar technology,” Electron. Lett., vol. 39, no. 2, pp. 217-218, Jan. 2003.
[27] S.-L. Jang, C.-C. Liu, and C.-W. Chung, “A tail-injected divide-by-4 SiGe HBT injection locked frequency divider,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 4, pp. 236-238, Apr. 2009.
[28] J.-C. Chien, C.-S. Lin, L.-H. Lu, H. Wang, J. Yeh, C.-Y. Lee, and J. Chern, “A harmonic injection-locked frequency divider in 0.18 μm SiGe BiCMOS,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 10, pp. 561-563, Oct. 2006.
[29] J. K. Nakaska and J. W. Haslett, “An integrated 6.2-11GHz SiGe inductorless injection locked frequency divider,” European Microwave Conf., vol. 1, Oct. 2005.
[30] S.-L. Jang, R.-K. Yang, C.-C. Liu, and C.-W. Hsue, “A low power SiGe BiCMOS series-tuned divide-by-3 injection locked oscillators,” Microwave and Optical Tech. Lett., vol. 51, no. 9, pp. 2239-2242, Sept. 2009.
[31] H. Wu and L. Zhang, “A 16-to-18GHz 0.18μm Epi-CMOS divide-by-3 injection-locked frequency divider,” in IEEE ISSCC Dig. Tech. Papers, pp. 27–29, Feb. 2006.
[32] S.-L. Jang, C.-C. Liu, and J.-F. Huang, “Divide-by-3 injection-locked frequency divider using two linear mixers,” IEICE Trans. Electron., vol. E93-C, no. 1, pp. 136-139, Jan. 2010.

無法下載圖示 全文公開日期 2015/07/28 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE