簡易檢索 / 詳目顯示

研究生: 蔡一新
Yi-Hsin Tsai
論文名稱: 無人機互聯網中的快取策略與服務管理
Caching Strategy and Service Management for Internet of Drones
指導教授: 金台齡
Tai-Lin Chin
口試委員: 沈上翔
Shan-Hsiang Shen
沈中安
Chung-An Shen
黃琴雅
Chin-Ya Huang
學位類別: 碩士
Master
系所名稱: 電資學院 - 資訊工程系
Department of Computer Science and Information Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 37
中文關鍵詞: 無人機互聯網物聯網快取內容放置請求分配
外文關鍵詞: Internet of Drones, Internet of Things, Caching, Content Placement, Request Allocation
相關次數: 點閱:256下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

近年來,無人機互聯網(Internet of Drones,IoD)引起了人們的興趣,通過使用無人機(也稱為無人駕駛飛行器)作為物聯網設備來提高傳統物聯網的靈活性。然而,無人機互聯網仍然面臨著一些挑戰。由於用戶的快速增長,大量用戶同時存取網路中的資料會導致網路擁塞,電池的限制也使無人機無法頻繁地提供服務。在最近的研究中,在用戶附近的邊緣伺服器中暫存無人機數據被譽為是減少無人機電池消耗的一種很有前景的方法。當用戶要請求無人機數據時,暫存了該數據的邊緣伺服器可以直接將數據提供給用戶,而不是向無人機取得,以減少用戶向無人機直接請求數據的次數。此方法不僅能夠減少無人機頻繁地傳輸數據的電池消耗,也可以減少網路的擁塞。本論文同時考慮了快取內容放置和用戶請求分配問題,其中每個邊緣伺服器皆配備一個容量有限的快取(cache),並且每個邊緣伺服器可以處理的用戶請求是有限制的。為了減少無人機傳輸數據的次數,選擇合適的數據放入快取中,並將用戶對數據的請求分配給適當的邊緣伺服器,同時不超過邊緣伺服器所能負荷的的服務率限制。此問題被定義為整數規劃問題。本文將用戶請求分配問題轉換為子集合優化問題,提出一種基於模擬退火和動態規劃的啟發式演算法來尋找快取數據放置及用戶請求分配的最優解。本文使用了不同的用戶請求分佈和實驗參數設置進行了廣泛的實驗,以展示我們提出的演算法在不同的情況下皆優於傳統方法。


Internet of drones (IoD) has recently attracted interest in improving the flexibility of the internet of things (IoT) by using drones, also known as unmanned aerial vehicles (UAVs), as IoT devices. However, IoD networks still face several challenges. Because of the rapid growth of users, simultaneous users access to the network will lead to network congestion. Battery constraint also makes drones incapable of transmitting data frequently. Caching the IoT data in the edge servers near the users is a promising way to reduce drones’ battery consumption. When the user requests IoT data, the edge servers that have cached that data can directly provide them to the user instead of obtaining them from the drones, thus reducing the number of direct requests from the drones, thereby reducing the battery consumption of the drones. This paper considers the joint cache content placement and user request allocation problem, where each edge server equips with a cache with limited capacity, and the user requests that each edge server can process are fixed. An effective and efficient scheme is proposed to place the data from the drones in the caches and allocate user requests to the proper edge servers. The problem is formulated as an integer programming problem. The user request allocation problem is transformed into a subset sum optimization problem and proposed a heuristic algorithm based on simulated annealing and dynamic programming to find the optimal solution for cache content placement and user request allocation problem. Extensive simulations have been carried out to show our proposed algorithm’s performance compared to other methods. Results show that the proposed algorithm outperforms the comparison methods in different data distribution and experimental parameter settings.

中文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii 英文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv 目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v 圖目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii 表目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii 1 緒論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 文獻探討. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1 無人機應用. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 無人機互聯網. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.3 無人機電池限制. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.4 快取機制. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.5 資源分配問題. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3 系統模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.1 系統概述. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.2 問題定義. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 4 航空數據排列演算法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4.1 演算法概念. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4.2 演算法詳細步驟. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 5 實驗結果與分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 5.1 實驗環境設置. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 5.2 比較方法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5.3 實驗結果. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 6 結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 參考文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

[1] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash, “Internet of Things: A survey on enabling technologies, protocols, and applications,” Commun. Surveys Tuts., vol. 17, p. 2347–2376, Oct 2015.
[2] C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos, “Context aware computing for the internet of things: A survey,” IEEE Communications Surveys Tutorials, vol. 16, no. 1, pp. 414–454, 2014.
[3] X. Sun and N. Ansari, “Traffic load balancing among brokers at the IoT application layer,” IEEE Transactions on Network and Service Management, vol. 15, no. 1, pp. 489–502, 2018.
[4] M. Gharibi, R. Boutaba, and S. L. Waslander, “Internet of Drones,” IEEE Access, vol. 4, pp. 1148–1162, 2016.
[5] S. Balaji, K. Nathani, and R. Santhakumar, “IoT technology, applications and challenges: A contemporary survey,” Wirel. Pers. Commun., vol. 108, p. 363–388, Sep 2019.
[6] Y. Liu, H.-N. Dai, Q. Wang, M. K. Shukla, and M. Imran, “Unmanned aerial vehicle for internet of everything: Opportunities and challenges,” Computer Communications, vol. 155, pp. 66–83, 2020.
[7] L. Abualigah, A. Diabat, P. Sumari, and A. H. Gandomi, “Applications, deployments, and integration of internet of drones (IoD): A review,” IEEE Sensors Journal, vol. 21, no. 22, pp. 25532–25546, 2021.
[8] Y. Karaca, M. Cicek, O. Tatli, A. Sahin, S. Pasli, M. F. Beser, and S. Turedi, “The potential use of unmanned aircraft systems (drones) in mountain search and rescue operations,” The American Journal of Emergency Medicine, vol. 36, no. 4, pp. 583–588, 2018.
[9] M. A. Khan, W. Ectors, T. Bellemans, D. Janssens, and G. Wets, “UAV-based traffic analysis: A universal guiding framework based on literature survey,” Transportation Research Procedia, vol. 22, pp. 541–550, 2017.
[10] J. Yao and N. Ansari, “QoS-aware power control in internet of drones for data collection service,” IEEE Transactions on Vehicular Technology, vol. 68, no. 7, pp. 6649–6656, 2019.
[11] J. Zhang, J. F. Campbell, D. C. Sweeney II, and A. C. Hupman, “Energy consumption models for delivery drones: A comparison and assessment,” Transportation Research Part D: Transport and Environment, vol. 90, p. 102668, 2021.
[12] J. Yao and N. Ansari, “QoS-aware rechargeable UAV trajectory optimization for sensing service,” ICC 2019 - 2019 IEEE International Conference on Communications (ICC), pp. 1–6, 2019.
[13] S. S. Bacanli, E. Elgeldawi, and D. Turgut, “Charging station placement in unmanned aerial vehicle aided opportunistic networks,” ICC 2021 - IEEE International Conference on Communications, pp. 1–5, 2021.
[14] M. Won, “UBAT: On jointly optimizing UAV trajectories and placement of battery swap stations,” 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 427–433, 2020.
[15] J. Yao and N. Ansari, “Caching in energy harvesting aided internet of things: A game-theoretic approach,” IEEE Internet of Things Journal, vol. 6, no. 2, pp. 3194–3201, 2019.
[16] J. Yao, T. Han, and N. Ansari, “On mobile edge caching,” IEEE Communications Surveys Tutorials, vol. 21, no. 3, pp. 2525–2553, 2019.
[17] J. Yao and N. Ansari, “Joint drone association and content placement in cache-enabled internet of drones,” 2019 IEEE Global Communications Conference (GLOBECOM), pp. 1–6, 2019.
[18] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation offloading for mobile-edge cloud computing,” IEEE/ACM Transactions on Networking, vol. 24, no. 5, pp. 2795–2808, 2016.
[19] C. You, K. Huang, H. Chae, and B.-H. Kim, “Energy-efficient resource allocation for mobile-edge computation offloading,” IEEE Transactions on Wireless Communications, vol. 16, no. 3, pp. 1397–1411, 2017.
[20] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science, vol. 220, no. 4598, pp. 671–680, 1983.
[21] R. Bellman, “Notes on the theory of dynamic programming IV - Maximization over discrete sets,” Naval Research Logistics Quarterly, vol. 3, no. 1-2, pp. 67–70, 1956.
[22] M. Mozaffari, W. Saad, M. Bennis, Y.-H. Nam, and M. Debbah, “A tutorial on UAVs for wireless networks: Applications, challenges, and open problems,” IEEE Communications Surveys Tutorials, vol. 21, no. 3, pp. 2334–2360, 2019.
[23] S. Zhang, “Object tracking in unmanned aerial vehicle (UAV) videos using a combined approach,” Proceedings. (ICASSP ’05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005., vol. 2, pp. ii/681–ii/684 Vol. 2, 2005.
[24] M. Alzenad, A. El-Keyi, F. Lagum, and H. Yanikomeroglu, “3-D placement of an unmanned aerial vehicle base station (UAV-BS) for energy-efficient maximal coverage,” IEEE Wireless Communications Letters, vol. 6, no. 4, pp. 434–437, 2017.
[25] M. Mozaffari, W. Saad, M. Bennis, and M. Debbah, “Efficient deployment of multiple unmanned aerial vehicles for optimal wireless coverage,” IEEE Communications Letters, vol. 20, no. 8, pp. 1647–1650, 2016.
[26] L. Zhang, Q. Fan, and N. Ansari, “3-D drone-base-station placement with in-band full-duplex communications,” IEEE Communications Letters, vol. 22, no. 9, pp. 1902–1905, 2018.
[27] P. Boccadoro, D. Striccoli, and L. A. Grieco, “An extensive survey on the internet of drones,” Ad Hoc Netw., vol. 122, Nov 2021.
[28] A. Koubaa and B. Qureshi, “DroneTrack: Cloud-based real-time object tracking using unmanned aerial vehicles over the internet,” IEEE Access, vol. 6, pp. 13810–13824, 2018.
[29] Z. Ali, S. A. Chaudhry, M. S. Ramzan, and F. Al-Turjman, “Securing smart city surveillance: A lightweight authentication mechanism for unmanned vehicles,” IEEE Access, vol. 8, pp. 43711–43724, 2020.
[30] J. Srinivas, A. K. Das, N. Kumar, and J. J. P. C. Rodrigues, “TCALAS: Temporal credential-based anonymous lightweight authentication scheme for internet of drones environment,” IEEE Transactions on Vehicular Technology, vol. 68, no. 7, pp. 6903–6916, 2019.
[31] T. Long, M. Ozger, O. Cetinkaya, and O. B. Akan, “Energy neutral internet of drones,” IEEE Communications Magazine, vol. 56, no. 1, pp. 22–28, 2018.
[32] J. Yao and N. Ansari, “Joint content placement and storage allocation in C-RANs for IoT sensing service,” IEEE Internet of Things Journal, vol. 6, no. 1, pp. 1060–1067, 2019.
[33] G. Ruggeri, M. Amadeo, C. Campolo, A. Molinaro, and A. Iera, “Caching popular transient IoT contents in an SDN-based edge infrastructure,” IEEE Transactions on Network and Service Management, vol. 18, no. 3, pp. 3432–3447, 2021.
[34] F. Jiang, Z. Yuan, C. Sun, and J. Wang, “Deep Q-Learning-based content caching with update strategy for fog radio access networks,” IEEE Access, vol. 7, pp. 97505–97514, 2019.
[35] W. Chen and L. Han, “Time-efficient task caching strategy for multi-server mobile edge cloud computing,” 2019 IEEE 21st International Conference on High Performance Computing and Communications; IEEE 17th International Conference on Smart City; IEEE 5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS), pp. 1429–1436, 2019.
[36] N. Zhao, F. R. Yu, L. Fan, Y. Chen, J. Tang, A. Nallanathan, and V. C. Leung, “Caching unmanned aerial vehicle-enabled small-cell networks: Employing energy-efficient methods that store and retrieve popular content,” IEEE Vehicular Technology Magazine, vol. 14, no. 1, pp. 71–79, 2019.
[37] H. Wu, J. Chen, F. Lyu, L. Wang, and X. Shen, “Joint caching and trajectory design for cache-enabled UAV in vehicular networks,” 2019 11th International Conference on Wireless Communications and Signal Processing (WCSP), pp. 1–6, 2019.
[38] A. Al-Hilo, M. Samir, C. Assi, S. Sharafeddine, and D. Ebrahimi, “UAV-assisted content delivery in intelligent transportation systems-Joint trajectory planning and cache management,” IEEE Transactions on Intelligent Transportation Systems, vol. 22, no. 8, 2021.
[39] N. Yu, Q. Xie, Q. Wang, H. Du, H. Huang, and X. Jia, “Collaborative service placement for mobile edge computing applications,” 2018 IEEE Global Communications Conference (GLOBECOM), pp. 1–6, 2018.
[40] L. Zhao, J. Wang, J. Liu, and N. Kato, “Optimal edge resource allocation in IoT-based smart cities,” IEEE Network, vol. 33, no. 2, pp. 30–35, 2019.
[41] J. Yao and N. Ansari, “Online task allocation and flying control in fog-aided internet of drones,” IEEE Transactions on Vehicular Technology, vol. 69, no. 5, pp. 5562–5569, 2020.
[42] A. Lobstein, “The hardness of solving subset sum with preprocessing,” IEEE Transactions on Information Theory, vol. 36, no. 4, pp. 943–946, 1990.
[43] Z. Zhang, H. Ma, and L. Liu, “Cache-aware named-data forwarding in internet of things,” 2015 IEEE Global Communications Conference (GLOBECOM), pp. 1–6, 2015.
[44] L. Wang, H. Wu, Z. Han, P. Zhang, and H. V. Poor, “Multi-hop cooperative caching in social IoT using matching theory,” IEEE Transactions on Wireless Communications, vol. 17, no. 4, pp. 2127–2145, 2018.

無法下載圖示 全文公開日期 2024/09/21 (校內網路)
全文公開日期 2024/09/21 (校外網路)
全文公開日期 2024/09/21 (國家圖書館:臺灣博碩士論文系統)
QR CODE