簡易檢索 / 詳目顯示

研究生: 蔡凱鈞
KAI-JIUN TSAI
論文名稱: 低能量密度、高效率、多波長共光路反射式拉曼探頭
Low power density, high efficiency, multi-wavelength reflective Raman probe
指導教授: 林鼎晸
Ding-Zheng Lin
口試委員: 周育任
Yu-Jen Chou
陳奕帆
Yih-Fan Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 59
中文關鍵詞: 表面增強拉曼高效率拉曼探頭反射式光路多波長
外文關鍵詞: Surface Enhanced Raman Scattering(SERS), High efficiency Raman probe, Multi wavelength, Reflective optics
相關次數: 點閱:638下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報


摘要 1 Abstract 3 致謝 5 目錄 6 圖目錄 8 表目錄 10 1 第一章 緒論 11 1.1 文獻回顧 11 1.1.1 拉曼光譜 11 1.1.2 拉曼光譜檢測儀器 12 1.2 研究目的 16 1.3 論文架構 16 2 第二章 研究方法 18 2.1 研究架構 18 2.2 量測系統架構 20 2.3 PET-SERS基板量測方法 22 2.4 ORIGIN軟體扣除背景功能 23 2.5 實驗設備 23 3 第三章 RRP II光路設計 26 3.1 光路設計與模擬 26 3.2 光路驗證 30 3.3 量測分析 32 4 第四章 結果與討論 38 4.1 商用拉曼探頭色散像差 38 4.2 PET-SERS基板破壞實驗結果 40 4.3 均勻性與再現性結果 44 4.4 系統比較 48 5 第五章 結論與未來展望 49 5.1 結論 49 5.2 未來展望 49 6 Reference 50 7 附錄A 53 8 附錄B 54 9 附錄C 56

1. An, N. T. T., Dao, D. Q., Nam, P. C., Huy, B. T. & Nhung Tran, H. Surface enhanced Raman scattering of melamine on silver substrate: An experimental and DFT study. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 169, 230–237 (2016).
2. Xu, Y. et al. Raman spectroscopy coupled with chemometrics for food authentication: A review. TrAC Trends in Analytical Chemistry 131, 116017 (2020).
3. Taylan, O., Cebi, N., Tahsin Yilmaz, M., Sagdic, O. & Bakhsh, A. A. Detection of lard in butter using Raman spectroscopy combined with chemometrics. Food Chemistry 332, 127344 (2020).
4. Fleming, H., Chen, M., Bruce, G. D. & Dholakia, K. Through-bottle whisky sensing and classification using Raman spectroscopy in an axicon-based backscattering configuration. Anal. Methods 12, 4572–4578 (2020).
5. Ong, T. T. X., Blanch, E. W. & Jones, O. A. H. Surface Enhanced Raman Spectroscopy in environmental analysis, monitoring and assessment. Science of The Total Environment 720, 137601 (2020).
6. Yilmaz, H., Yilmaz, D., Taskin, I. C. & Culha, M. Pharmaceutical applications of a nanospectroscopic technique: Surface-enhanced Raman spectroscopy. Advanced Drug Delivery Reviews 184, 114184 (2022).
7. Tahir, M. A. et al. Klarite as a label-free SERS-based assay: a promising approach for atmospheric bioaerosol detection. Analyst 145, 277–285 (2020).
8. Chrimes, A. F., Khoshmanesh, K., Stoddart, P. R., Mitchell, A. & Kalantar-zadeh, K. ChemInform Abstract: Microfluidics and Raman Microscopy: Current Applications and Future Challenges. ChemInform 44, 5880–5906 (2013).
9. Cordero, E. In-vivo Raman spectroscopy: from basics to applications. J. Biomed. Opt. 23, 1 (2018).
10. Nelson, G. L., Lines, A. M., Casella, A. J., Bello, J. M. & Bryan, S. A. Development and testing of a novel micro-Raman probe and application of calibration method for the quantitative analysis of microfluidic nitric acid streams. Analyst 143, 1188–1196 (2018).
11. Guo, J. et al. High-Sensitivity Raman Gas Probe for In Situ Multi-Component Gas Detection. Sensors 21, 3539 (2021).
12. Moretti, G. & Gervais, C. Raman spectroscopy of the photosensitive pigment Prussian blue. J. Raman Spectrosc. 49, 1198–1204 (2018).
13. Osticioli, I., Mencaglia, A. A. & Siano, S. Temperature-controlled portable Raman spectroscopy of photothermally sensitive pigments. Sensors and Actuators B: Chemical 238, 772–778 (2017).
14. Waleska, P. S. & Hess, C. Oligomerization of Supported Vanadia: Structural Insight Using Surface-Science Models with Chemical Complexity. J. Phys. Chem. C 120, 18510–18519 (2016).
15. Kim, H., Kosuda, K. M., Van Duyne, R. P. & Stair, P. C. Resonance Raman and surface- and tip-enhanced Raman spectroscopy methods to study solid catalysts and heterogeneous catalytic reactions. Chem. Soc. Rev. 39, 4820 (2010).
16. Rupp, S., Off, A., Seitz-Moskaliuk, H., James, T. & Telle, H. Improving the Detection Limit in a Capillary Raman System for In Situ Gas Analysis by Means of Fluorescence Reduction. Sensors 15, 23110–23125 (2015).
17. Mencaglia, A. A., Osticioli, I. & Siano, S. Development of an efficient and thermally controlled Raman system for fast and safe molecular characterization of paint layers. Measurement 118, 372–378 (2018).
18. Mencaglia, A. A., Osticioli, I., Ciofini, D., Gallo, L. & Siano, S. Raman spectrometer for the automated scan of large painted surfaces. Review of Scientific Instruments 90, 053101 (2019).
19. Rebollar, E. et al. Physicochemical modifications accompanying UV laser induced surface structures on poly(ethylene terephthalate) and their effect on adhesion of mesenchymal cells. Phys. Chem. Chem. Phys. 16, 17551 (2014).
20. Raman Spectrum of Polyethylene terephthalate. https://publicspectra.com/Raman/Polyethylene%20terephthalate.

無法下載圖示 全文公開日期 2028/08/22 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 2028/08/22 (國家圖書館:臺灣博碩士論文系統)
QR CODE