簡易檢索 / 詳目顯示

研究生: 蔡維瀚
Wei-han Tsai
論文名稱: 圓形鋼管混凝土柱之梁柱接頭區細部設計與耐震行為研究
Seismic Behavior and Detailing of Steel Beam to Circular CFT Column Connections
指導教授: 歐昱辰
Yu-Chen Ou
口試委員: 陳正誠
Cheng-Cheng Chen
周中哲
Chung-Che Chou
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 297
中文關鍵詞: 填充型鋼管混凝土柱梁柱接頭翼板貫入式剪力強度混凝土剪力強度翼板加勁板翼板寬
外文關鍵詞: concrete-filled tube column, beam-to-column joint, beam flange through type, shear strength, concrete shear strength, flange stiffeners, flange width.
相關次數: 點閱:288下載:32
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

填充型鋼管混凝土柱具高強度高韌性之優良特性,即使承受火害其核心混凝土不易喪失垂直承載力,故可降低其防火被覆需求,加上鋼管材料比較容易回收,具有環保優勢。填充型鋼管混凝土柱可分為組合箱型、矩形及圓形鋼管斷面,組合箱型柱及矩形鋼管推廣應用已行之有年,圓形鋼管混凝土柱則因其與H型鋼梁在梁柱接頭交會區施工不易,以及接頭區之剪力機制不明,使得應用上受到限制。
近年來隨著都市更新,都市建築有高層化趨勢,超高層建築基底樓層之柱必須承受較高的軸壓力,使用鋼管混凝土柱填充混凝土由於鋼管可提供混凝土極佳的圍束力以提升其強度及韌性,具有一定的優勢,故本研究設計一採用鋼板貫穿混凝土填充式鋼柱,該鋼板稱為翼板連接板,鋼梁翼板以銲接方式與翼板連接板接合,鋼梁腹板採螺栓與銲於鋼柱表面之腹板連接板接合。梁翼板端可採用任一種可使梁塑鉸離開柱面與銲接熱影響區之設計一簡單可行之接合型式。依據以上規劃設計4組接頭區剪力破壞之試體,分別以內灌混凝土、內藏加勁板與翼板連接板寬作為變異參數,以研究接頭剪力強度,藉此除了驗證接頭細部設計之可行性,並對內灌混凝土、加勁板與翼板寬之影響作進一步之研究。
實驗結果顯示本研究所研擬之接合方式安全、經濟便利可行,接頭內灌混凝土對於接頭之剪力強度有顯著之提昇,內藏加勁板與增加梁寬對於接頭剪力強度貢獻亦為顯著。實驗結果數據與規範比對發現,以現行SRC規範之條款計算此種接頭之剪力強度,結果保守安全,但於混凝土抗剪貢獻之部分有嚴重低估之情形,本研究就實驗觀察及數據之分析提出相關設計建議,以供後續研究或規範修改之參考。其中有對梁寬提出上下限之建議,以確保接頭灌漿施工性與梁剪力傳遞至接頭之有效性。並針對外柱之情形,提出翼板連接板貫入接頭端加銲加勁板之設計建議。


Concrete filled steel tubular (CFT) columns have advantages in strength and ductility. Even under fire attacks, the core concrete could maintain its axial load capacity and thus the strict requirement for fire proof may be liberated. Furthermore, recycling of steel tubes is relatively easy. Typical CFT columns are in the form of square tubes or circular pipes as required by architectural restrictions. Unlike the widely-used box-section columns, the use of circular CFT columns has been limited due to the complexity of the connections to such columns.
Recently, skylines in modern cities continue to rise because of urban renewal. The columns in the lower stories in a high-rise building have to sustain high axial load and bending moment. CFT columns have advantages over conventional l and RC columns because the steel tube serves as formwork and offers superior confinement to the infilled concrete, thus improving its strength and ductility under high axial load. However, the complex design and detailing for moment connections have to be further improved, simplified, and verified with experiments.
This research proposed a beam-flange-through-type beam-column joint connection for CFT columns and tested four beam-column joint specimens to examine the effect of infilled concrete, beam flange stiffeners, and width of beam on the joint shear strength. Construction of the specimens showed that the proposed connection details are practical and easy to be implemented. Cyclic loading test results showed that the infilled concrete significantly increases the joint shear strength. The use of beam-flange stiffeners and increasing the beam width also have significant contribution to joint shear strength. Current shear strength provisions in the SRC code can be conservatively used to estimate the shear strength of the proposed beam-column joint. However, the shear strength contribution from concrete is significant under-estimated. This research proposed a strut-and-tie joint shear strength model for concrete joint shear strength. Comparison with the test results showed that the proposed model can accurately estimate the shear strength contribution from concrete of the proposed beam-column joint. However, the shear strength contribution from concrete is significantly under-estimated. This research proposed a softened-strut joint shear strength model for concrete joint shear strength. Comparison with the test results showed that the proposed model can accurately estimate the shear strength contribution from concrete of the proposed beam-column joint. Based on experimental obervations and analytical studies, modification to the current code provision on joint shear strength contribution from concrete is proposed. Moreover, the upper and lower limits on the width of the beam flange are proposed to address the constructibility issue related to concrete infilling and shear transfer from the beam to the joint. Furhermore, design suggestions on the beam flange stiffeners are proposed.

摘要 I ABSTRACT III 目錄 V 表目錄 IX 圖目錄 XI 第一章 緒論 1 第一節 研究動機與背景 1 第二節 研究目的 2 第三節 研究方法 3 第二章 文獻回顧 7 第一節 文獻資料之蒐集及整理 7 第二節 文獻資料之分析 17 第三章 試體設計製作與載重試驗規劃 19 第一節 鋼梁翼板連接板貫穿混凝土填充鋼柱式梁柱接頭接合型式 19 第二節 鋼梁翼板連接板貫穿混凝土填充鋼柱式梁柱接頭施工流程 22 第三節 試體設計規劃與製作 25 第四節 試體架設方式 31 第五節 測量系統與實驗程序 33 第六節 接頭區變位分析方法 40 第四章 載重試驗與分析 45 第一節 材料強度試驗 45 第二節 梁柱接頭試體反覆載重試驗 50 第三節 台灣SRC規範於接頭區剪力強度之計算 85 第四節 試驗數據分析 89 第五節 設計建議 111 第五章 結論與建議 115 參考文獻 119 附錄A 試體設計施工圖 123 附錄B 試體壓力灌漿相關照片 131 附錄C 試體組裝銲接鋼梁施工相關照片 137 附錄D 銲道超音波檢測(UT檢測)相關照片與其報告書 143 附錄E 各試體之應變計與位移遲滯迴圈圖 149 附錄(a) 試體FP2S於各階段試驗照片及NDI變形示意圖 163 附錄(b) 試體FP2CS於各階段試驗照片及NDI變形示意圖 187 附錄(c) 試體FP2C於各階段試驗照片及NDI變形示意圖 215 附錄(d) 試體FP3CS於各階段試驗照片及NDI變形示意圖 243

[1] 內政部營建署 (2010),「鋼結構極限設計法規範及解說」。
[2] 內政部營建署 (2011),「混凝土結構設計規範」。
[3] 內政部營建署 (2011),「鋼骨鋼筋混凝土構造設計規範與解說」。
[4] 吳賴雲、鍾立來、盧建帆、黃國倫、沈東儒 (2005),「鋼管混凝土結構雙向螺栓式梁柱接頭之力學行為與耐震驗證」,結構工程,第二十卷,第二期,第43-74頁。
[5] 李鴻利 (2001) ,「圓形鋼管混凝土梁柱接頭之有限元素分析」,碩士論文,國立交通大學土木工程研究所,新竹市。
[6] 林克強 (2000) ,「具上下夾型之柱外橫隔板之鋼管混凝土柱梁接頭行為研究」,博士論文,國立台灣大學土木工程研究所,台北。
[7] 林克強、蔡克銓 (2001) ,「鋼梁與鋼管混凝土柱含柱外夾型橫隔板接頭之抗彎矩構架系統」,土木技術,第四卷,第二期,第76-89頁。
[8] 林衍宏 (2001) ,「圓形鋼管混凝土梁柱接頭之剪力傳遞行為,碩士論文,國立高雄第一科技大學營建工程系碩士班,高雄市。
[9] 陳誠直、林南交 (2003),「矩形鋼管混凝土柱與H型鋼梁抗彎接頭行為之研究(II)」,國科會專題研究計畫成果完整報告,NSC91-2625-Z-009-002
[10] 森田耕次, 横山幸夫, 川又康博, 松村弘道, “コンクリート充てん角形鋼管柱 : 鉄骨はり接合部の内ダイアフラム補強に関する研究,” 日本建築学会構造系論文報告集, No. 422, 1991-04-30, 1991, pp. 85-96.
[11] 黃柏軒 (2000),「圓形鋼管混凝土柱與鋼梁接頭之耐震研究」,碩士論文,國立高雄第一科技大學營建工程系碩士班,高雄市。
[12] 羅勝宏 (2002),「鋼梁接圓形鋼管混凝土柱接頭耐震行為」,碩士論文,國立交通大學土木工程研究所,新竹市。
[13] Alostaz, Y. M. and Schneider, S. P., (1996) “Analytical Behavior of Connections to Concrete-Filled Steel Tubes,” Journal of Construction Steel Research, Vol. 40, No. 2, pp. 95-127.
[14] Azizinamini, A., Shekar, Y., and Saadeghvaziri, M. A. (1995), "Design of through beam connection detail for circular composite columns," Engineering Structures, Vol. 17, No. 3, 209-213.
[15] Chen, C. C., and Lin, N. J. (2004) “Experimental investigation of flange plate connections between concrete-filled tube column and steel beam,” Proceedings of 13th World Conference on Earthquake Engineering, Vancouver, Canada, Paper No. 476.
[16] Chen, S. J., and Chao, Y. C. (2001), "Effect of Composite Action on Seismic Performance of Steel Moment Connections with Reduced Beam Sections," Journal of Constructional Steel Research, Vol. 57, No. 4, 417-434.
[17] Cheng, C.-T., and Chung, L.-L. (2003), "Seismic performance of steel beams to concrete-filled steel tubular column connections," Journal of Constructional Steel Research, Vol. 59, No. 3, 405-426.
[18] Kang, C.-H., Shin, K.-J., Oh, Y.-S., and Moon, T.-S. (2001), “Hysteresis behavior of CFT column to H-beam connections with external T-stiffeners and penetrated elements,” Engineering Structures, Vol. 23, No. 9, 1194-1201.
[19] Ricles, J. M., Lu, L. W., Sooi, T. K., Vermaas, G. W., and Graham, W. W. (1996), “Experimental performance of moment connections in CFT column-WF beam structural systems under seismic loading,” Proceedings of the 11th World Conference on Earthquake Engineering, Acapulco, Mexico, June 23-28, Paper No. 1224.
[20] Schneider, S. P., and Alostaz, Y. M. (1998), "Experimental Behavior of Connections to Concrete-Filled Steel Tubes," Journal of Constructional Steel Research, Vol. 45, No. 3, 321-352.
[21] Wu, L.Y., Chung, L.L., Tsai, S.F., Lu, C.F., Huang, G.L. (2007), “Seismic behavior of bidirectional bolted connections for CFT columns and H-beams,” Engineering Structures, Vol.29, pp. 395-407.

QR CODE