簡易檢索 / 詳目顯示

研究生: 陳盈吟
Ying-Yin Chen
論文名稱: 鋼筋混凝土與複合型耦合剪力牆系統有限元素分析
The Finite Element Analysis of Reinforcement Concrete and Hybrid Coupled Shear Wall Systems
指導教授: 鄭敏元
Min-Yuan Cheng
口試委員: 陳正誠
Cheng-Cheng Chen
洪崇展
Chung-Chan Hung
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 112
中文關鍵詞: 鋼筋混凝土耦合剪力牆系統複合型耦合剪力牆系統剪力連接梁有限元素低降伏鋼
外文關鍵詞: RC Coupled Shear Wall System, Hybrid Coupled Shear Wall System, Coupling Beam, Finite Element, Low-Yield Point Steel
相關次數: 點閱:195下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

過去文獻指出鋼筋混凝土剪力牆是一有效且經濟的耐震構材,但因建築或使用需求經常會在剪力牆上做規則的開孔,此時單面剪力牆分割成多面剪力牆,牆與牆之間則由深短梁連接,這種具有規則開孔之剪力牆一般稱為耦合剪力牆系統 (coupled shear wall system),而連接牆之深短梁則稱為剪力連接梁 (coupling beam)。因為深短梁以剪力主控,使用傳統梁配筋方式無法滿足強度與變形需求,部分學者提出使用鋼梁取代鋼筋混凝土梁的構想,但是相關設計建議主要根據構件實驗以及有限元素分析結果,過去曾有文獻使用低降伏鋼耦合剪力梁進行大型複合型耦合剪力牆系統測試,但結果不如預期,本研究藉由有限元素法(LS-DYNA)進一步探討耦合剪力牆設計建議。

分析結果顯示,耦合剪力牆系統耦合效應比可由構件標稱強度合理評估,就對角線鋼筋之鋼筋混凝土剪力連接梁而言,其標稱剪力強度建議使用斷面撓曲強度決定;就低降伏鋼之剪力連接梁而言,其標稱強度採用現行規範AISC(2010)連桿梁的設計公式,會低估梁之剪力容量,本研究根據分析結果建議使用三倍標低降伏鋼稱降伏強度去評估,除此之外,分析發現受壓牆面承受剪力可能是受拉牆面二至三倍,。

在實務設計上,本研究建議先評估系統在桿件均達標稱強度下之耦合效應,要得到系統理想的變形能力,需控制受壓剪牆面之軸力低於0.15P_0,並限制牆內剪力需求控制在0.50√(f_c^' ) MPa以下。


Previous studies indicate the reinforced concrete (RC) shear wall is a cost-effective seismic resisting element. A row of regular openings are commonly required on the wall due to architectural or practical needs. In this case, the wall is divided into two or more individual walls. This system is referred as coupled shear wall system and the beam, typically with small span-to-depth ratio, is referred as the coupling beam.

Because of its small span-to-depth, RC coupling beam design is governed by shear. Traditional reinforcement layout for RC flexural member is not able to develop design strength and satisfactory deformation capacity. Some researchers propose the use of steel coupling beam. However, the design recommendations for steel coupling beams are primarily developed based on tests results of coupling beam subassemblages and finite element analyses. Large experimental work conducted previously showed that hybrid coupled shear wall specimen using the low-yield point steel coupling beam did not perform as expected. Finite element model is constructed in this study in order to provide more information and design recommendation for the hybrid coupled shear wall system.

The analytical results indicate that the coupling ratio of the coupled shear wall system can be rationally estimated using member nominal strengths. For diagonally reinforced concrete coupling beams, its nominal shear strength evaluated from flexural capacity is recommended. For low-yield point steel coupling beams, the use of ASIC (2010) design equation underestimates its shear capacity. A multiplier of 3 is proposed to evaluate the nominal shear capacity of the low-yield point steel coupling beam. Analytical results also indicate that shear is not uniform distributed between the walls as the system is subjected to coupling effect. The compressive wall takes shear that can be two to three times greater than the tensile wall.

For practical design, this study suggests to first evaluate system coupling effect using the member nominal strengths. To have satisfactory system deformation capacity, it is necessary to limit axial force and shear stress less than 0.15P_0 and 0.50√(f_c^' ) MPa, respectively, for the wall subjected to compression.

摘要 I Abstract II 目錄 IV 圖目錄 VII 表目錄 XI 第一章 緒論 1 1.1研究背景 1 1.2研究動機 5 1.3研究目的與方法 5 1.4研究內容架構 5 第二章 文獻回顧 7 2.1剪力連接梁 7 2.2鋼筋混凝土剪力連接梁 7 2.3鋼剪力連接梁 11 2.4耦合剪力牆系統 17 2.5複合型耦合剪力牆試驗介紹與結果 19 2.5.1試體配筋細部 20 2.5.1.1剪力連接梁配筋細部 20 2.5.1.2剪力牆配筋細部 23 2.5.2試驗配置與試驗過程 26 2.5.3試驗結果 27 2.5.3.1材料性質 27 2.5.3.2試體測試結果 28 第三章 有限元素分析基本架構 32 3.1有限元素分析流程 32 3.2元素類型與模型建立 33 3.3材料模型 35 3.3.1鋼筋 35 3.3.2鋼板 36 3.3.3混凝土 38 3.4沙漏控制 38 3.5元素侵蝕參數設定 39 3.6圓柱抗壓試驗模型 40 3.7鋼筋拉伸試驗模型 43 3.8低降伏鋼板拉伸試驗模型 44 3.9鋼筋混凝土剪力連接梁模型 46 第四章 耦合剪力牆有限元素數值分析 52 4.1系統原型模型建立與驗證 52 4.1.1模型建立 52 4.1.2模型側推分析驗證 64 4.1.2.1鋼筋混凝土耦合剪力牆模型 69 4.1.2.2複合型耦合剪力牆模型 73 4.2耦合剪力牆模型行為分析 78 4.2.1鋼筋混凝土耦合剪力牆 78 4.2.2複合型耦合剪力牆 88 4.3耦合剪力牆斷面分析行為 97 4.4耦合剪力牆彈性分析行為 99 第五章 結論 103 參考文獻 104 符號說明 110

ACI Committee 318, 1999, “Building Code Requirements for Structural Concrete and Commentary (ACI 318-99),” American Concrete Institute, Detroit, Michigan, 391 pp

ACI Committee 318, 2005, “Building Code Requirements for Structural Concrete and Commentary (ACI 318-05),” American Concrete Institute, Detroit, Michigan, 436 pp

ACI Committee 318, 2008, “Building Code Requirements for Structural Concrete and Commentary (ACI 318-08),” American Concrete Institute, Detroit, Michigan, 465 pp

ACI Committee 318, 2011, “Building Code Requirements for Structural Concrete and Commentary (ACI 318-11),” American Concrete Institute, Detroit, Michigan, 503 pp

ACI Committee 318, 2014, “Building Code Requirements for Structural Concrete and Commentary (ACI 318-14),” American Concrete Institute, Detroit, Michigan, 519 pp

American Institute of Steel Construction, Inc., 2005, “Seismic Provisions for Structural Steel Buildings”, ANSI/AISC 341-05, AISC, Chicago, IL,310pp.,

American Institute of Steel Construction, Inc., 2010, “Seismic Provisions for Structural Steel Buildings”, ANSI/AISC 341-10, AISC, Chicago, IL,356pp.,

Barney, G. B., Shiu, K. N., Rabbat, B. G., Fiorato, A. E., Russell, H. G., and Corley, W. G.,1980,“Behaviors of Coupling Beams under Load Reversals”, Portland CementAssociation, Skokie, IL,22pp.

M.-Y. Cheng, Fikri, R., C.-C. Chen, 2015, “Experimental Study of Reinforced Concrete and Hybrid Coupled Shear Wall Systems. ”, Engineering Structures, pp. 214-225.

ETABS (version9.5) ,2008, Computers and Structures, Inc.

El-Tawil, S., Fortney, P., Harries, K., Shahrooz, B., Kurama, Y., Hassan, M.,
and Tong, X., 2010, “Recommendations for Seismic Design of Hybrid Coupled
Wall Systems”, SEI/American Society of Civil Engineers. 112 pp.

Fortney P.J., Shahrooz B.M., and Rassati, G.A., 2007, “Large Scale Testing of a Replaceable ‘Fuse’ Steel Coupling Beam,” Journal of Structural Engineering, ASCE, Vol. 133, No. 12, December 2007, pp. 1801-1807

Gong, B. and Shahrooz, B. M., 2001a, “Concrete-Steel Composite Coupling Beams. II: Subassembly Testing and Design Verification,” Journal of Structural Engineering, ASCE, Vol. 127, No. 6, pp. 632-638.

Gong, B. and Shahrooz, B. M., 2001b, “Steel-Concrete Composite Coupling Beams – Behavior and Design,” Engineering Structures, Vol. 23, pp. 1480-1490.

Harries, K. A.; Mitchell, D.; Cook, W. D. and Redwood, R. G., 1993, “Seismic Reponse of Steel Beams Coupling Concrete Walls,” Journal of Structural Engineering, V. 119, No. 12, pp. 3611- 3629.

Harries, K. A.; Mitchell, D.; and Redwood, R. G; Cook, W. D., 1997, “Seismic Design of Coupled Walls – A Case for Mixed Construction,” Canadian Journal of Civil Engineering, V. 24, No. 3, pp. 448-459.

Harries, K. A., Gong, B., and Shahrooz, B. M. (2000), "Behavior and Design of Reinforced Concrete, Steel, and Steel-Concrete Coupling Beams," Earthquake Spectra, Volume 16, No.4, pp. 775-799.

Harries, K.A. and McNeice, D.S., 2006. “Performance-Based Design of Coupled Wall Systems,” Vol. 15, No. 3 pp. 289 – 306.

Harries, K.A., Shahrooz, B. M., Brienen, P. , Fortney, P., and Rassati, ,2006. “Performance-Based Design of High-Rise Coupled Wall Systems, The Structural Design of Tall and Special Structures,” Composite Construction in Steel and Concrete V:, ASCE, pp. 686-697

HyperMesh(Version v11.0),2011, Altair Engineering, Inc.

Lequensne, R. D., 2011, “Behavior and Design of High-Performance Fiber-Reinforced Concrete Coupling Beams and Coupled-Wall Systems,” Ph. D Thesis, Department of Civil and Environmental Engineering, The University of Michigan-Ann Arbor, 277 pp.

LS-DYNA(2007) (Version 971) ,2007, Livermore Software Technology Corporation.

LS-DYNA Keyword user’s Manual (Version 971) ,2007, Livermore Software Technology Corporation.

LS-DYNA Theory Manual (Version 971) ,2007, Livermore Software Technology Corporation.

LS-DYNA Theory Manual (Version 971),2015, Livermore Software Technology Corporation.

Murray, Y.D.,2006, “Users Manual for LS-DYNA Concrete Material Model 159,” Federal Highway Administration,FHWA-HRT-05-062, pp. 77.

Paulay, T, 1969, “The Coupling of Shear Walls,” PhD Dissertation, University of Canterbury, Christchurch, New Zealand, 435 pp.

Paulay, T. and Binney, J. R., 1974, “Diagonally Reinforced Coupling Beams of Shear Walls,” Shear in Reinforced Concrete, SP-42, V. 2, American Concrete Institute, Farmington Hill, Mich., pp. 579-598.

Parra-Montesinos, G. J.; Wight, J. K. and Setkit, M., 2010, “Earthquake-
Resistant Coupling Beams without Diagonal Reinforcement”, Concrete
International, 32(12), Dec., pp. 36-40.

Remmetter, Mark E.; Qin, Fei; Shahrooz, Bahram M.,1992, “Seismic Resistance of Composite Coupled Structural Walls,” Cincinnati Infrastructure Institute, University of Cincinnati, College of Engineering, pp. 174.

Shahrooz, B. M., Remmetter, M. A. and Qin, F, 1993, “Seismic Design and Performance of Composite Coupled Walls,” Journal of the Structural Division, ASCE, V.119, No. 11, pp. 3291-3309.

Shiu, N. K., Barney, G. B., Fiorato, A. E. and Corley, W. G., 1978, “Reversing Load Tests of Reinforced Concrete Coupling Beams,” Proceedings of the Central American Conference on Earthquake Engineering, El Salvador, pp. 239-249.

Users Manual for LS-DYNA Concrete Material Model 159, 2007, Federal Highway Administration

Xuan, G., Shahrooz, B. M., Harries, K. A., and Rassati, G. A., 2007, “A Performance-Based Design Approach for Coupled Core Wall Systems with Diagonally Reinforced Concrete Coupling Beams,” Advance Structural Engineering, Vol. 11, No. 3, pp. 253–268

張權,「低降伏強度鋼鋼板剪力牆系統之耐震行為」,國立台灣科技大學,民國九十五年。


QR CODE