簡易檢索 / 詳目顯示

研究生: Delele Worku Ayele
Delele - Worku Ayele
論文名稱: Controlled Synthesis, Manipulation of Composition and Application of CdSe Quantum Dots for Solar Cell.
Controlled Synthesis, Manipulation of Composition and Application of CdSe Quantum Dots for Solar Cell.
指導教授: 黃炳照
Bing-Joe Hwang
口試委員: 蘇威年
None
陳良益
None
周澤川
None
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 170
中文關鍵詞: surface modificationband gapoleic acidmass productionmicrowaveCdSe QDs
外文關鍵詞: CdSe QDs, microwave, mass production, oleic acid, band gap, surface modification
相關次數: 點閱:286下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報


A method that does not employ hot injection techniques has been developed for the size-tunable synthesis of high-quality CdSe quantum dots (QDs) with a zinc blende structure. In this environmentally benign synthetic route, which uses relatively less toxic precursors, solvents, and capping ligands, CdSe QDs that absorb visible light are obtained. The size of the as-prepared CdSe QDs and, thus, their optical properties can be manipulated by changing the microwave reaction conditions. In this approach, the reaction is conducted in open air and at a much lower temperature than in hot injection techniques. The use of microwaves in this process allows for a highly reproducible and effective synthesis protocol that is fully adaptable for mass production and can be easily employed to synthesize a variety of semiconductor QDs with the desired properties.
A strategy with respect to band gap engineering by controlling the composition of CdSe quantum dots (QDs) is reported. After the CdSe QDs are prepared, their compositions can be effectively manipulated from equimolar to Cd-rich and then to Se-rich QDs using an ultrasonic-enhanced chemical bath deposition technique. To obtain Cd-rich CdSe QDs, Cd was deposited on equimolar CdSe QDs. Further deposition of Se on Cd-rich CdSe QDs produced Se-rich CdSe QDs. By changing the QDs composition, the overall optical properties of the CdSe QDs can be manipulated. It was found that as the composition of the CdSe QDs changes from equimolar CdSe to Cd-rich and then Se-rich CdSe, the band gap decreases along with a red shift of UV-vis absorption edges and PL peaks. Clearly, the band gap decreases as a function of composition change from equimolar to Cd-rich and then to Se-rich CdSe QDs. The quantum yield also decreases with surface composition from equimolar to Cd-rich and then to Se-rich, largely due to the changes in the surface state. Because of the involvement of the surface trapping state, the carrier life time also increased from the equimolar CdSe QDs to the Cd-rich to the Se-rich CdSe QDs. We have shown that the optical properties of CdSe QDs can be controlled by manipulating the composition of the surface atoms. The as prepared QDs are characterized by XRD, TEM, EDS, UV-vis, FTIR, time-resolved fluorescence spectroscopy, and fluorescence spectrophotometry. These highly controlled synthesis method, and band gap engineering strategy along with tunable-optical properties via manipulating composition can potentially be extended to other semiconductor nanocrystals.
Following the preparation, colloidal CdSe QDs are assembled on a new architecture of polytetrafluoroethylene (PTFE) framed TiO2 electrode for QDSSC for the first time. CdSe QDs are attached on the surface of the film using linker molecules (3-mercaptopropionic acid, MPA) and absorbed directly without MPA. The as-prepared electrode is composed of a TiO2 compact and a PTFE framed structure layer with average thickness of 2μm and 23μm (to 28μm) respectively. UV-vis absorption spectra show that more CdSe quantum dots are anchored on the surface of TiO2 film modified with MPA than direct absorption. Energy conversion efficiency up to 0.18% can be achieved with a cell prepared from TiO2 (25 μm)/MPA/CdSe QD electrode. Electrochemical impedance measurement shows that the recombination resistance is higher for a cell assembled with TiO2 (25 μm)/MPA/CdSe QD photoanode than TiO2 (25 μm)/CdSe QD resulting in an increase of cell efficiency. Although further investigation and optimization of the new photoanode for QDSSC is needed, the PTFE framed structure along with the compact layer is a new approach for QDSSC application and provides a tunable film thickness and cost-effective preparation for large scale production of the photoanode.

Key words: CdSe QDs, microwave, mass production, oleic acid, band gap, surface modification, composition, chemical bath deposition, Quantum dot-sentisitized solar cell, TiO2 film, PTFE framed, compact layer, structure layer, average life time.

Abstract I Acknowledgment IV List of Tables VII List of Schemes VIII List of Figures IX Organization of Dissertation XIII Chapter 1: Introduction 14 1.1. An overview of Semiconductors 14 1.2. Semiconductor nanocrystals. 21 1.3. Properties, Structure and Band Gap of Semiconductor Nanocrystals 28 1.4. Synthesis of semiconductor nanocrystals 42 Chapter 2: Review on the Synthesis and Properties of CdSe QDs 55 2.1. Properties of CdSe QDs 55 2.2. Optimizing Photoluminescence of CdSe QDs 68 2.4. Synthesis of CdSe quantum dot 70 2.5. Alternative Energy Sources for the Synthesis of CdSe QDs 87 2.6. Application of CdSe QDs 87 2.7. Objectives of the research 92 Chapter 3: Experiments and Characterizations 94 3.1. Experiments 94 3.2. PL Quantum Yield Measurement 103 3.3. Characterization 104 Chapter 4: Controlled Synthesis of CdSe Quantum Dots via Microwave-Enhanced Process without Using Hot Injection Technique: A Green Approach for Mass Production 106 4.1. Introduction 106 4.2. Results and Discussion 110 Chapter 5: Composition-Tunable Properties of CdSe Quantum Dots: From Equimolar to Cd-rich and then to Se-rich 128 5.1. Introduction 128 5.2. Result and discussion 130 Chapter 6: Assembly of Colloidal CdSe Quantum Dots on to Poly tetrafluoroethylene (PTFE) framed TiO2 electrode for solar cell applications. 149 6.1. Introduction 149 6.2. Results and Discussion 152 Chapter 7: Conclusion 158 References 161

References

(1) Smith, A.; Nie, S. Acc. Chem. Res. 2010, 43, 190.
(2) Sze, S. M.; Ng, K. K. Physics of Semiconductor Devices, 3rd ed., A JOHN WILEY & SONS, JNC., PUBLICATION, Canada 2007.
(3) Ihn, T. Semiconductor Nanostructures, Oxford, University Press, New York , 2010.
(4) Singh, J. Electronic and Optoelectronic Properties of Semiconductor Structures, 1st ed., Cambridge university press, Cambridge, New York, 2003.
(5) Hedgcock, F. T.; Raudorf, T. W. Solid State Communications 1970, 8, 1819.
(6) Weisbuch, C.; Vinter, B. Quantum Semiconductor Structures, Academic, New York, 1991.
(7) Li, J.; Wang, L.-W. Chem. Mater. 2004, 16, 4012.
(8) Yacobi, B. G. Semiconductor Materials:An Introduction to Basic Principles,Kluwer Academic Publishers,New York. 2003.
(9) Kudera, S. Semiconductor Nanocrystal Quantum Dots, SpringerWienNewYork 2008, ISBN 978.
(10) Brus, L. E. J. Chem. Phys. 1984, 80, 4403.
(11) Alivisatos, A. P. J. Phys. Chem. A 1996, 100, 13226.
(12) Nirmal, M.; Brus, L. Acc. Chem. Res. 1999, 32, 407.
(13) McBride, J.; Treadway, J.; Feldman, L. C.; Pennycook, S. J.; Rosenthal, S. J. Nano Lett. 2006, 6 1496.
(14) Bailey, R. E.; Nie, S. J. Am. Chem. Soc. 2003, 125, 7100.
(15) Klimov, V. I. Annu. Rev. Phys. Chem. 2007, 58, 635.
(16) Klimov, V. I. Science 2000, 287, 1011.
(17) Luo, J.-W.; Franceschetti, A.; Zunger, A. Nano Lett. 3008, 8, 3174.
(18) Fisher, B.; Caruge, J. M.; Zehnder, D.; Bawendi, M. Phys.Rev. Lett. 2005, 94, 087403.
(19) Dooley, C. J.; Dimitrov, S. D.; Fiebig, T. J. Phys. Chem. C 2008 112, 12074.
(20) Buhro, W. E.; Colvin, V. L. Nat. Mater. 2003, 2, 138.
(21) Peng, X. G. Adv. Mater. 2003, 15, 459.
(22) L.Manna; Milliron, D. J.; Meisel, A.; C.Scher, E.; Alivisatos, A. P. Nat. Mater. 2003, 2, 382.
(23) Ithurria, S.; Dubertret, B. J. Am. Chem. Soc. 2008, 130, 16504.
(24) C.Scher, E.; Manna, L.; Alivisatos, A. P. Philos. Trans. R. Soc. London, Ser. A 2003, 361, 241.
(25) Manna, L.; Milliron, D. J.; Meisel, A.; C.Scher, E.; Alivisatos, A. P. Nat. Mater. 2003, 2, 382.
(26) S.Pokrant; Whaley, K. B. T. Eur. Phys. J. D 1999, 6, 255.
(27) Underwood, D. F.; Kippeny, T.; Rosenthal, S. J. J. Phys. Chem. B 2001, 105, 436.
(28) Murray, C. B.; Noms, D. J.; Bawendi, M. G. J. Am. Chem. Soc. 1993, 115, 8706.
(29) Mancini, M. C.; Kairdolf, B. A.; Smith, A. M.; Nie, S. J. AM. Chem. Soc. 2008, 130, 10836.
(30) H.Tolbert, S.; P.Alivisatos, A. Annu. Rev. Phys. Chem. 1995, 46, 595.
(31) Liu, L.; Peng, Q.; Li, Y. Inorg. Chem 2008, 47, 5022.
(32) Li, L.-s.; Hu, J.; Yang, W.; Alivisatos, A. P. Nano Lett. 2001, 1, 349.
(33) Dabbousi, B. O.; Rodriguez-Viejo, J.; Mikulec, F. V.; Heine, J. R.; Mattoussi, H.; Ober, R.; Jensen, K. F.; Bawendi, M. G. J. Phys. Chem. B 1997, 101, 9463.
(34) Jung, S. I.; Yeo, H. Y.; Yun, I.; Cho, S. M.; Han, I. K.; Lee, J. I. J. Nanosci. Nanotechnol. 2008, 8, 4899.
(35) Raevskaya, A. E.; Stroyuk, A. L.; YaKuchmiy, S.; Dzhagan, V. M.; Valakh, M. Y.; Zahn, D. R. T. J. Phys.: Condens. Matter 2007, 19, 386237.
(36) Wang, H.; Nakamura, H.; Uehara, M.; Yamaguchi, Y.; Miyazaki, M.; Maeda, H. Adv.Funct. Mater. 2005, 15, 603.
(37) Sung, Y.-M.; Kwak, W.-C.; Kim, T. G. Cryst. Growth Des. 2008, 8, 1186.
(38) Singh, S. B.; Limaye, M. V.; Lalla, N. P.; Kulkarni, S. K. J. Lumin. 2008, 128, 1909.
(39) Meulenberg, R. W.; Buuren, T. v.; Hanif, K. M.; Willey, T. M.; Strouse, G. F.; Terminello, L. J. Nano Lett. 2004, 4, 2277.
(40) Lang, X. Y.; Zheng, W. T.; Jiang, Q. IEEE TRANSACTIONS ON NANOTECHNOLOGY 2008, 7, 5.
(41) Erwin, S. C.; Zu, L.; Haftel, M. I.; Efros, A. L.; Kennedy, T. A.; Norris, D. J. nature 2005, 436, 03832.
(42) Banin, U.; Bawendi, M. G. e. t. a. l. NANOCRYSTAL QUANTUM DOTS, SECOND EDITION, CRC Press, New York 2010, ISBN 978.
(43) Rogach, A. L.; Franzl, T.; Klar, T. A.; Feldmann, J.; Gaponik, N.; Lesnyak, V.; A. Shavel ; Eychm€uller, A.; Rakovich, Y. P.; Donegan, J. F. J. Phys. Chem C 2007, 111, 14628.
(44) Murray, C. B.; Norris, D. J.; Bawendi, M. G. J. Am. Chem. Soc. 1993, 115, 8706.
(45) Yoffe, A. D. Adv. Phys. 2001 1, 50.
(46) Hu, J.; Odom, T. W.; Lieber, C. M. Acc. Chem. Res. 1999, 32, 435.
(47) Lauhon, L. J.; Gudiksen, M. S.; Wang, D.; Lieber, C. M. Nature 2002, 57, 420.
(48) Borelli, N. F.; Smith, D. W. J. Non-Crystalline Solids 1994, 180, 25.
(49) Lipovskii, A.; Kolobkova, E.; Petrikov, V.; Kang, I.; Olkhovets, A.; Krauss, T.; Thomas, M.; Silcox, J.; Wise, F.; Shen, Q.; Kycia, S. App. Phys. Lett. 1997, 71, 3406.
(50) Manna, L.; Scher, E. C.; Alivisatos, A. P. J Am Chem Soc 2000, 122, 12700.
(51) Peng, Z. A.; Peng, X. G. J. AM. Chem. Soc. 2001, 123, 1389.
(52) Yu, W.; Wang, Y. A.; Peng, X. Chem Mater 2003, 15, 4300.
(53) Qu, L.; Peng, Z.; Peng, X. Nano Lett
2001, 1, 333.
(54) Pan, B.; He, R.; Gao, F.; Cui, D.; Zhang, Y. J. Cryst. Growth 2006, 286
318.
(55) Sapra, S.; Rogach, A. L.; Feldmann, J. J. Mater. Chem. 2006, 16, 3391.
(56) Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Annu. Rev. Mater. Sci. 2000, 30, 545.
(57) Peng, Z. A.; Peng, X. J Am. Chem. Soc. 2001, 123, 183.
(58) Reiss, P.; Bleuse, J.; Pron, A. Nano Lett 2002, 2, 781.
(59) Yu, W.; Peng, X. Angew Chem Int Ed 2002, 41, 2368.
(60) Huang, Y.; Duan, X. F.; Cui, Y.; Lauhon, L. J.; Kim, K. H.; Lieber, C. M. Science 2001, 294, 1313.
(61) Duan, X. F.; Huang, Y.; Cui, Y.; Wang, J. F.; Lieber, C. M. Nature 2001, 409, 66.
(62) Murray, C. B.; Sun, S.; Gaschler, W.; Doyle, H.; Betley, T. A.; Kagan, C. R. IBM J. Res. Dev. 2001, 45, 47.
(63) Liu, H.; Owen, J. S.; Alivisatos, A. P. J. Am. Chem. Soc. 2007, 129, 305.
(64) Steckel, J. S.; Yen, B. K. H.; Oertel, D. C.; Bawendi, M. G. J. Am. Chem. Soc. 2006, 128, 13032.
(65) Embden, J. v.; Mulvaney, P. Langmuir 2005, 21, 10226.
(66) Liu, L.; Peng, Q.; Li, Y. Inorg. Chem 2008, 47, 5022.
(67) Zlateva, G.; Zhelev, Z.; Bakalova, R.; Kanno, I. Inorg. Chem. 2007, 46, 6212.
(68) Wanga, C.; Jianga, Y.; Chena, L.; Li, S.; Li, G.; Zhanga, Z. Materials Chemistry and Physics 2009, 116, 388.
(69) Higginson, K. A.; Kuno, M.; Bonevich, J.; Qadri, S. B.; Yousuf, M.; Mattoussi, H. J. Phys. Chem. A 2002, 106, 9982.
(70) Kalyuzhny, G.; Murray, R. W. J. Phys. Chem. B 2005, 109, 7012.
(71) Peng, X.; Wickham, J.; Alivisatos, A. P. J. Am. Chem Soc. 1998, 120, 5343.
(72) Ferreira, D. L.; Silva, F. O.; Viol, L. C. S.; Schiavon, M. A.; Licinio, P.; Valadares, M.; Cury, L. A.; Alves, J. L. A. 29th International conference on the physics of semiconductors 2009, 309.
(73) Halpert, J. E.; Porter, V. J.; Zimmer, J. P.; Bawendi, M. G. J. Am. Chem. Soc. 2006, 128, 12590.
(74) Puzder, A.; Williamson, A. J.; Zaitseva, N.; Galli, G.; Manna, L.; Alivisatos, A. P. Nano Lett 2004, 4, 2361.
(75) Manna, L.; Wang, L. W.; Cingolani, R.; Alivisatos, A. P. J Phys Chem B 2005, 109, 6183.
(76) Rempel, J. Y.; Trout, B. L.; Bawendi, M. G.; Jensen, K. F. J Phys Chem B 2005, 109, 19320.
(77) Rempel, J. Y.; Trout, B. L.; Bawendi, M. G.; Jensen, K. F. J Phys Chem B 2006, 110, 18007.
(78) Dalpian, G. M.; Tiago, M. L.; Puerto, M. L. d.; Chelikowsky, J. R. Nano Lett 2006, 6, 501.
(79) Lifshitz, E.; Bashouti, M.; Kloper, V.; Kigel, A.; Eisen, M. S.; Berger, S. Nano Lett 2003, 3, 857.
(80) Peng, X.; Manna, L.; Yang, W.; Wickham, J.; Scher, E.; Kadavanich, A.; Alivisatos, A. P. Nature 2000, 404, 59.
(81) Kanaras, A. G.; Sonnichsen, C.; Liu, H.; Alivisatos, A. P. Nano Lett 2005, 5, 2164.
(82) Lawaetz, P. Phys Rev B: Cond Matt 1972, 5, 4039.
(83) Akiyama, T.; Nakamura, K.; Ito, T. Phys Rev B 2006, 73, 235308.
(84) Peng, X. Chem Eur J 2002, 8, 334.
(85) Choi, S.-H.; Songb, H.; Park, K.; Yumb, J.-H.; Kimb, S.-S.; Lee, S.; Sung, Y.-E. Journal of Photochemistry and Photobiology A: Chemistry 2006, 179, 135.
(86) Peng, X.; Schlamp, M. C.; Kadavanich, A. V.; Alivisatos, A. P. J. Am. Chem. Soc. 1997, 119, 7019.
(87) Liu, J.-H.; Fan, J.-B.; Gu, Z.; Cui, J.; Xu, X.-B.; Z.-W. Liang; Luo, S.-L.; Zhu, M.-Q. Langmuir 2008, 24, 5241.
(88) Boatman, M. E.; Lisensky, G. C.; Nordell, K. J. Journal of Chemical Education 2005, 82, 1697.
(89) Yang, H.; Luan, W.; Tu, S.-t.; Wang, Z. M. Crystal Growth & Design, 2009, 9, 1569.
(90) Peng, Q.; Dong, Y.; Deng, Z.; Li, Y. Inorg. Chem. 2002, 41, 5249.
(91) Liu, L.; Zhuang, Z.; Xie, T.; Wang, Y.-G.; Li, J.; Peng, Q.; Li, Y. J. Am. Chem. Soc. 2009, 131, 16423.
(92) Asokan, S.; Krueger, K. M.; Colvin, V. L.; Wong, M. S. Small 2007, 3, 1164.
(93) Hu, J.; Li, L.-S.; Yang, W.; Manna, L.; Wang, L.-W.; Alivisatos, A. P. Science 2001, 292, 2060.
(94) Kan, S.; Mokari, T.; Rothenberg, E.; Banin, U. Nat Mater 2003, 2, 155.
(95) Millo, O.; Katz, D.; Steiner, D.; Rothenberg, E.; Mokari, T.; Kazes, M.; Banin, U. Nanotechnology
2004, 15
R1.
(96) Gur, I.; Fromer, N. A.; Geier, M. L.; Alivisatos, A. P. Science 2005, 310, 462.
(97) WU, H.; Dittmer, J. J.; Alivisatos, A. P. Science 2002, 295, 2425

(98) Cui, Y.; Banin, U.; Bjork, M. T.; Alivisatos, A. P. Nano Lett 2005, 5, 1519.
(99) Gur, I.; Fromer, N. A.; Chen, C. P.; Kanaras, A. G.; Alivisatos, A. P. Nano Lett 2007, 7, 409.
(100) Li, J. B.; Wang, L. W. Nano Lett 2003, 3, 1357.
(101) DePuydt, J. M.; Haase, M. A.; Guha, S.; Qiu, J.; Cheng, H.; Wu, B. J.; Hofler, G. E.; Meis-Haugen, G.; Hagedorn, M. S.; Baude, P. F. J. Cryst. Growth 1994, 138, 667.
(102) Blanton, S. A.; Hines, M. A.; Guyot-Sionnest, P. Appl. Phys. Lett.
1996, 69, 3905.
(103) Bawendi, M. G.; Carroll, P. J.; Wilson, W. L.; Brus, L. E., J. Chem. Phys. 1992, 96, 946.
(104) Yu, Z.; Guo, L.; Du, H.; Krauss, T.; Silcox, J. Nano Lett. 2005, 5, 565.
(105) Lim, S. J.; Chon, B.; Joo, T.; Shin, S. K. J. Phys. Chem. C 2008, 112
1744.
(106) Kim, W.; Jun Lim, S.; Jung, S.; Shin, S. K. J. Phys. Chem. C 2010, 114, 1539.
(107) Peng, X. Acc. Chem. Res. 2010, 43, 1387.
(108) Malik, M. A.; Afzaal, M.; O’Brien, P. Chem. Rev. 2010, 110, 4417.
(109) Li, J. J.; Wang, Y. A.; Guo, W.; Keay, J. C.; Mishima, T. D.; Johnson, M. B.; Peng, X. J. Am. Chem. Soc. 2003, 125, 12567.
(110) Qu, L.; Peng, X. J. Am. Chem. Soc. 2002, 124, 2049.
(111) Hines, M.; Guyot-Sionnest, P. J. Phys. Chem. B 1998, 102, 3655.
(112) Steigerwald, M. L.; Brus, L. E. Acc Chem Res 1990, 23, 183.
(113) Peng, Z. A.; Peng, X. J. Am. Chem. Soc. 2001, 123, 183.
(114) Peng, X.; Thessing, J. Struc Bond 2005, 118, 79.
(115) Peng, Z. A.; Peng, X. J Am Chem Soc. 2002, 124, 3343.
(116) Sundar, V. C.; Lee, J.; Heine, J. R.; Bawendi, M. G.; Jensen, K. F. Adv. Mater. 2000, 12, 1102.
(117) Artemyev, M.; U, W. R. W.; H, L. W. J. Nano Lett 2001, 1, 309.
(118) Chan, W. C. W.; Nie, S. M. Science 1998, 281, 2016.
(119) Hines, M. A.; Guyot-Sionnest, P. J Phys Chem B 1996, 100, 468.
(120) Chen, Y.; Ji, T.; Rosenzweig, Z. Nano Lett 2003, 3, 581.
(121) Park, J.; Lee, K. H.; Galloway, J. F.; Searson, P. C. J. Phys. Chem. C 2008, 112, 17849.
(122) Herron, N.; Wang, Y.; Eckert, H. J Am Chem Soc. 1990, 112, 1322.
(123) Herron, N.; Calabress, J. C.; Farneth, W. E.; Wang, Y. Science 1993, 259, 1426.
(124) Dahl, J. A.; Maddux, B. L. S.; Hutchison, J. E. Chem. Rev. 2007, 107, 2228.
(125) Leitner, W. Science 1999, 284, 1780b.
(126) Trost, B. M. Angew Chem, Int Ed Engl 1995, 34, 259.
(127) Gerbec, J. A.; Magana, D.; Washington, A.; Strouse, G. F. J. Am. Chem. Soc. 2005, 127, 15791.
(128) Glaspell, G.; Fuoco, L.; El-Shall, M. S. J. Phys. Chem. B 2005, 109, 17350.
(129) Panda, A. B.; Glaspell, G.; El-Shall, M. S. J. Am. Chem. Soc. 2006, 128, 2790.
(130) Liu, F.-K.; Ker, C.-J.; Chang, Y.-C.; Ko, F.-H.; Chu, T.-C.; Dai, B.-T. Jpn. J. Appl. Phys., Part 1 2003, 42, 4152.
(131) Zhu, J.; Palchik, O.; Chen, S.; Gedanken, A. J. Phys. Chem. B 2000, 104, 7344.
(132) Jiang, Y.; Zhu, Y.-J. Chem. Lett. 2004, 33, 1390.
(133) Bang, J. H.; Kamat, P. V. ACS Nano 2009, 3, 1467.
(134) Wang, W. Z.; Geng, Y.; Yan, P.; Liu, F. Y.; Y, X.; Qian, Y. T. J. Am. Chem. Soc. 1999, 121, 4602.
(135) Hagfeldt, A.; Gratzel, M. Chem. ReV. 1995, 95, 49.
(136) Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H. Chem. Rev. 2010, 110, 6595.
(137) Lin, S.-C.; Lee, Y.-L.; Chang, C.-H.; Shen, Y.-J.; Yang, Y.-M. Appl. Phys. Lett. 2007, 90, 143517.
(138) Plass, R.; Serge, P.; Kruger, J.; Gratzel, M. J. Phys. Chem. B 2002, 106, 7578.
(139) Nozik, A. J. Inorg. Chem. 2005, 44, 6893.
(140) Wang, Y.; Herron, N. J. Phys. Chem. B 1991, 95, 525.
(141) Yu, W.; Qu, L.; Guo, W.; Peng, X. Chem. Mater. 2003, 15, 2854.
(142) Nozik, A. J. Physica E 2002, 14, 115.
(143) Schaller, R. D.; Klimov, V. I. Phys. Rev. Lett. 2004, 92, 186601
(144) G. S. Philippe Nat. Mater. 2005, 4., 653.
(145) Vogel, R.; Hoyer, P.; Weller, H. J. Phys. Chem. A 3183 98, 1994.
(146) Robel, I.; Subramanian, V.; Kuno, M.; Kamat, P. V. J. Am. Chem. Soc. 2006, 128, 2385
(147) Kongkanand, A.; Tvrdy, K.; Takechi, K.; Kuno, M.; Kamat, P. V. J. Am. Chem. Soc. 2008, 130, 4007.
(148) Lee, Y.-L.; Chang, C.-H. Journal of Power Sources 2008, 185, 584.
(149) Lee, Y.-L.; Huang, B.-M.; Chien, H.-T. Chem. Mater. 2008, 20, 6903.
(150) Beach, E. S.; Cui, Z.; Anastas, P. T. Energy Environ.Sci. 2009, 2, 1038.
(151) Chen, J.; Li, C.; Zhao, D. W.; Lei, W.; Zhang, Y.; Cole, M. T.; Chu, D. P.; Wang, B. P.; Cui, Y. P.; Sun, X. W.; Milne, W. I. Electrochem. Commun. 2010, 12, 1432.
(152) Chen, J.; Song, J. L.; Sun, X. W.; Deng, W. Q.; Jiang, C. Y.; Lei, W.; Huang, J. H.; Liu, R. S. Appl. Phys. Lett. 2009, 94, 153115.
(153) Lee, Y.-L.; Chang, C.-H. J. Power Sources 2008, 185, 584.
(154) Grabolle, M.; Spieles, M.; Lesnyak, V.; Gaponik, N.; Eychmuller, A.; Resch-Genger, U. Anal.Chem. 2009, 81, 6285.
(155) Wang, X.; Qu, L.; Zhang, J.; Peng, X.; Xiao, M. Nano Lett. 2003, 3, 1103.
(156) Hambrock, J.; Birkner, A.; Fischer, R. A. J. Mater. Chem. 2001, 11, 3197.
(157) Lazell, M.; O’Brien, P. J. Mater. Chem. 1999, 9, 1381.
(158) Gao, M.; Kirstein, S.; Mohwald, H.; Rogach, A. L.; Kornowski, A.; Eychmu1ller, A.; H. Weller J. Phys. Chem. B 1998, 102, 8360.
(159) Liang, H.; Angelini, T. E.; Ho, J.; Braun, P. V.; Wong, G. C. L. J. Am. Chem. Soc. 2003, 125, 11786.
(160) Leschkies, K. S.; Divakar, R.; Basu, J.; Enache-Pommer, E.; Boercker, J. E.; Carter, C. B.; Kortshagen, U. R.; Norris, D. J.; Aydil, E. S. Nano Lett. 2007, 7, 1793.
(161) Peng, Q.; Dong, Y.; Deng, Z.; Sun, X.; Y. Li Inorg. Chem. 2001, 40, 3840.
(162) Hambrock, J.; Birkner, A.; Fischer, R. A. J. Mater. Chem. 2001, 11, 3197.
(163) Xu, D.; Shi, X.; Guo, G.; Gui, L.; Tang., Y. J. Phys. Chem. B 2000, 104, 5061
(164) WashingtonII, A. L.; Strouse, G. F. J. Am. Chem. Soc. 2008, 130, 8916
(165) Wolcott, A.; Fitzmorris, R. C.; Muzaffery, O.; Zhang, J. Z. Chem. Mater. 2010, 22, 2814.
(166) Pan, D.; Wang, Q.; Jiang, S.; Ji, X.; An, L. Adv. Mater. 2005, 17, 176.
(167) Hwang, B.-J.; Yu, T.-H.; Cheng, M.-Y.; Santhanam, R. J. Mater. Chem. 2009, 19, 4536.
(168) Wu, C.-C.; Shiau, C.-Y.; Ayele, D. W.; Su, W.-N.; Cheng, M.-Y.; Chiu, C.-Y.; Hwang, B. J. Chem. Mater. 2010, 22, 4185.
(169) Zhang, C.; Liao, L.; Gong, S. Green Chem. 2007, 9, 303.
(170) Scheinost, A. C.; Kirsch, R.; Banerjee, D.; Fernandez-Martinez, A.; Zaenker, H.; Funke, H.; Charlet, L. Journal of Contaminant Hydrology 2008, 102, 228.
(171) Tang, K.; Yu, D.; Wang, F.; Wang, Z. Growth & Design 2006, 6, 2159.
(172) Wu, N.; Fu, L.; Su, M.; Aslam, M.; Wong, K. C.; Dravid, V. P. Nano Lett. 2004, 4, 383.
(173) Limaye, M. V.; Singh, S. B.; Date, S. K.; Kothari, D.; Reddy, V. R.; Gupta, A.; Sathe, V.; Choudhary, R. J.; Kulkarni, S. K. J. Phys. Chem. B 2009, 113, 9070.
(174) Deng, Z.; Cao, L.; Tang, F.; Zou, B. J. Phys. Chem. B 2005, 109, 16671.
(175) Wang, X.; Li, K.; Dong, Y.; Jiang, K. Cryst. Res. Technol. 2010, 45, 94.
(176) More, P. D.; Shahane, G. S.; Deshmukh, L. P.; Bhosale, P. N. Mater. Chem. Phys. 2003, 80, 48.
(177) Wang, W.; Banerjee, S.; Jia, S.; Steigerwald, M. L.; Herman, I. P. Chem. Mater. 2007, 19, 2573.
(178) Pradhan, N.; Reifsnyder, D.; Xie, R.; Aldana, J.; Peng, X. G. J. Am. Chem. Soc. 2007, 129, 9500.
(179) Al-Salim, N.; Young, A. G.; Tilley, R. D.; McQuillan, A. J.; Xia, J. Chem. Mater. 2007, 19, 5185.
(180) Kalasad, M. N.; Rabinal, M. K.; Mulimani, B. G. Langmuir 2009, 25, 12729.
(181) Kwak, W.-C.; Sung, Y.-M.; Kim, T. G.; Chae, W.-S. Appl. Phys. Lett. 2007, 90, 173111.
(182) Kwak, W.-C.; Kim, T. G.; Chae, W.-S.; Sung, Y.-M. Nanotechnology 2007, 18, 205702.
(183) Zhang , J.; Zhang, X.; J. Zhang, Y. J. Phys. Chem. C 2009, 113, 9512.
(184) Hyun, B.-R.; Zhong, Y.-W.; Bartnik, A. C.; Sun, L.; Abruna, H. D.; Wise, F. W.; Goodreau, J. D.; Matthews, J. R.; Leslie, T. M.; Borrelli, N. F. ACS Nano 2008, 2, 2206.
(185) Tvrdy, K.; Kamat, P. V. J. Phys. Chem. A 2009, 113, 3765.
(186) Fisher, B. R.; Eisler, H.-J.; Stott, N. E.; Bawendi, M. G. J. Phys. Chem. B 2004, 108, 143.
(187) Driel, A. F. V.; Nikolaev, I. S.; Vergeer, P.; Lodahl, P.; Vanmaekelbergh, D.; Vos, W. L. Phys. Rev. B 2007, 75, 035329.
(188) Chen, W.; Wang, X.; Tu, X.; Pei, D.; Zhao, Y.; Guo, X. small 2008, 4, 759.
(189) Hojeij, M.; Su, B.; Tan, S.; Me′riguet, G.; Girault, H. H. ACS Nano 2008, 2, 984.
(190) Selmarten, D.; Jones, M.; Rumbles, G.; Yu, P.; Nedeljkovic, J.; Shaheen, S. J. Phys. Chem. B 2005, 109, 15927.
(191) Sanz, M.; Correa-Duarte, M. A.; Liz-Marz′an, L. M.; Douhal., A. J. Photochemistry and Photobiology A: Chemistry 2008, 196, 51.
(192) Klimov, V. I.; McBranch, D. W.; Leatherdale, C. A.; Bawendi, M. G. Phys. Rev. B 1999, 60, 13740.
(193) Lee, W. Z.; Shu, G. W.; Wang, J. S.; Shen, J. L.; Lin, C. A.; Chang, W. H.; Ruaan, R. C.; Chou, W. C.; Lu, C. H.; Lee, Y. C. Nanotechnology 2005, 16, 1517.
(194) Califano, M.; Franceschetti, A.; Zunger, A. Nano Lett. 2005, 5, 2360.
(195) Kairdolf, B. A.; Smith, A. M.; Nie, S. J. Am. Chem. Soc.
2008, 130, 12866.
(196) Qian, L.; Bera, D.; Holloway, P. H. Nanotechnology 2008, 19, 285702.
(197) Prabakar, K.; Minkyu, S.; Inyoung, S.; Heeje, K. J. Phys. D: Appl. Phys.
2010, 43, 012002.
(198) Robel, I.; Kuno, M.; Kamat, P. V. J. Am. Chem. Soc. 2007, 129, 4136.
(199) Erni, R.; Browning, N. D. Ultramicroscopy 2007, 107, 267.
(200) Liu, L.; Peng, Q.; Li, Y. Inorg. Chem. 2008, 47, 3182.
(201) Bailey, R. E.; Nie, S. J. Am. Chem. Soc. 2003, 125, 7100.
(202) Leistikow, M. D.; Johansen, J.; Kettelarij, A. J.; Lodahl, P.; Vos, W. L. Phys. Rev. B 2009, 79, 045301.
(203) Coe, S.; Woo, W.-K.; Bawendi, M.; Bulovic, V. Nature 2002, 420, 800
(204) Kim, L.; Anikeeva, P. O.; Coe-Sullivan, S. A.; Steckel, J. S.; Bawendi, M. G.; Bulovic, V. Nano Lett. 2008, 8, 4513.
(205) Anikeeva, P. O.; Halpert, J. E.; Bawendi, M. G.; Bulovic, V. Nano Lett. 2009, 9, 2532.
(206) Colvin, V. L.; Schlamp, M. C.; Allvisato, A. P. Nature 1994, 370, 354.
(207) Diguna, L. J.; Shen, Q.; Kobayashi, J.; Toyodaa, T. Appl. Phys. Lett. 2007, 91, 023116.
(208) Farrow, B.; Kamat, P. V. J. Am. Chem. Soc. 2009, 131, 11124.
(209) Chen, J.; Song, J. L.; Sun, X. W.; Deng, W. Q.; Jiang, C. Y.; Lei, W.; Huang, J. H.; Liu, R. S. Appl.Phys.Lett. 2009, 95, 153115.
(210) Chan, W. C. W.; Nie, S. Science 1998, 281, 2016.
(211) Bruchez Jr, M.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. Science 1998, 281, 2013.
(212) Mattoussi, H.; Mauro, J. M.; Goldman, E. R.; Anderson, G. P. J. Am. Chem. Soc. 2000, 122, 12142.
(213) Jung, S. I.; Yeo, H. Y.; Yun, I.; Cho, S. M.; Han, I. K.; Lee, J. I. .J. Nanosci. Nanotechnol. 2008, 8, 4899.
(214) Raevskaya, A. E.; Stroyuk, A. L.; YaKuchmiy, S.; Dzhagan, V. M.; Valakh, M. Y.; Zahn, D. R. T. J. Phys.: Condens. Matter 2007, 19, 386237.
(215) Singh, S. B.; Limaye, M. V.; Lalla, N. P.; Kulkarni, S. K. J. Lumin. 2008, 128, 1909.
(216) Meulenberg, R. W.; Buuren, T. v.; Hanif, K. M.; Willey, T. M.; Strouse, G. F.; Terminello, L. J. Nano Lett. 2004, 4, 2277.
(217) Talapin, D. V.; Rogach, A. L.; Kornowski, A.; Haase, M.; Weller, H. Nano Lett. 2001, 1, 207.
(218) Wang, X.-S.; Dykstra, T. E.; Salvador, M. R.; Manners, I.; Scholes, G. D.; Winnik, M. A. J. Am. Chem. Soc. 2004, 126, 7784.
(219) Leung, K.; Whaley, K. B. J. Chem. Phys. 1999, 110, 11012.
(220) Hill, N. A.; Whaley, K., B J. Chem. Phys. 1994, 100, 2831.
(221) Fu, H.; Zunger, A. Phys. Rev. B 1997, 56, 1496.
(222) Kokotov, M.; Biller, A.; Hodes, G. Chem. Mater. 2008, 20, 4542.
(223) Ortega-Lopez, M.; Avila-Garcia, A.; Albor-Aguilera, M. L.; Resendiz, V. M. S. Mater. Res.Bull. 2003, 38, 1241.
(224) Cruz-vazquez, C.; Rocha-Alonzo, F.; Burruel-Ibarra, S. E.; Barboza-Flores, M.; Bernal, R.; Inoue, M. Appl. Phys. A 2004, 79, 1941.
(225) Cao, B.; Cai, W.; Li, Y.; Sun, F.; Zhang, L. Nanotechnology 2005, 16, 1734.
(226) McPeak, K. M.; Baxter, J. B. Ind. Eng. Chem. Res. 2009, 48, 5954.
(227) Zainal, Z.; Saravanan, N.; Anuar, K.; Hussein, M. Z.; Yunus, W. M. M. Mater. Sci. Eng. B 2004, 107, 181.
(228) Smith, A. M.; Nie, S. Acc.Chem. Res. 2010, 43, 190.
(229) Donega′, C. d. M.; Hickey, S. G.; Wuister, S. F.; Vanmaekelbergh, D.; Meijerink, A. J. Phys. Chem. B 2003, 107, 489.
(230) Carter, A. C.; Bouldin, C. E.; Kemner, K. M.; Bell, M. I.; Woicik, J. C.; Majetich, S. A. Phys. Rev. B 1997, 55, 13822.
(231) Tvrdy, K.; Kamat, P. V. J. Phys. Chem. A 2009, 113, 3765.
(232) Wang, X.-Y.; Zhang, J.-Y.; Nazzal, A.; Darragh, M.; Xiao, M. Appl. Phys. Lett. 2002, 81, 4829.
(233) Maly, P.; Kudrna, J.; Trojanek, F.; Mikeš, D.; Němec, P.; Maciel, A. C.; Ryan, J. F. App.Phys. Lett. 2000, 77, 2352.
(234) Bawendi, M. G.; Carroll, P. J.; Wilson, W. L.; Bruce, L. E. J. Chem.Phys. 1992, 96, 946.
(235) O’Regan, B.; Gratzel, M. Nature 1991, 353, 737.
(236) Yu, H.; Zhang, S.; Zhao, H.; Xue, B.; Liu, P.; Will, G. J. Phys. Chem. C 2009, 113, 16277.
(237) Chong, L.-W.; Chien, H.-T.; Lee, Y.-L. J. Power Sources 2010, 195, 5109.
(238) Zhang, Q.; Zhang, Y.; Huang, S.; Huang, X.; Luo, Y.; Meng, Q.; Li, D. Electrochem. Commun. 2010, 12, 327.
(239) Lee, H. J.; Yum, J.-H.; Leventis, H. C.; Zakeeruddin, S. M.; Haque, S. A.; Chen, P.; Seok, S. I.; Gra‥tzel, M.; Nazeeruddin, M. K. J. Phys. Chem. C 2008, 112, 11600.
(240) Xie, Y.; Ali, G.; Yoo, S. H.; Cho, S. O. ACS Appl. Mater. Interfaces 2010, 2, 2914.
(241) Lee, W.; Min, S. K.; Dhas, V.; Ogale, S. B.; Han, S.-H. Electrochem. Commun. 2009, 11, 103.
(242) Farrow, B.; P, V. K. J. Am. Chem. Soc. 2009, 131, 11124.
(243) Yu, W. W.; Qu, L.; Guo, W.; Peng, X. Chem. Mater. 2003, 15, 2854.
(244) Lewis, N. S. Science 2007, 315, 798.
(245) Nozik, A. J. Chem. Phys. Lett. 2008, 457, 3.
(246) Kongkanand, A.; K.Tvrdy; K.Takechi; Kuno, M.; Kamat, P. V. J. Am. Chem. Soc. 2008, 130, 4007.
(247) Song, X.; Yu, X.-L.; Xie, Y.; Sun, J.; Ling, T.; Du, X.-W. Semicond. Sci. Technol. 2010, 25, 095014.
(248) Chang, C.-H.; Lee, Y.-L. Appl. Phys. Lett. 2007, 91, 053503.
(249) Mora-Ser′o, I.; Gimenez, S.; Moehl, T.; Fabregat-Santiago, F.; Lana-Villareal, T.; G′omez, R.; Bisquert, J. Nanotechnology 2008, 19, 424007.
(250) Zaban, A.; Mic′ic′, O. I.; Gregg, B. A.; Nozik, A. J. Langmuir 1998, 14, 3153.
(251) Cameron, P. J.; Peter, L. M. J. Phys. Chem. B 2003, 107, 14394.
(252) Peng, B.; Jungmanna, G.; Jager, C.; Haarer, D.; Schmidt, H.-W.; Thelakkat, M. Coord. Chem. Rev. 2004, 248, 1479.
(253) Yu, H.; Zhang, S.; Zhao, H.; Willb, G.; Liua, P. Electrochim. Acta 2009, 54, 1319.
(254) Wang, H.-F.; Chen, L.-Y.; Su, W.-N.; Chung, J.-C.; Hwang, B.-J. J. Phys. Chem. C 2010, 114, 3185.
(255) Wang, H.-F.; Su, W.-N.; Hwang, B.-J. Electrochem.Commun. 2009, 11, 1647.

QR CODE