簡易檢索 / 詳目顯示

研究生: 李燕婷
Yen-ting Li
論文名稱: 硼酸親和配體磁性微粒之製備及其純化醣蛋白之應用
Preparation and Application of Boronic Acid Affinity Ligand Magnetic Particles to Purify Glycoproteins
指導教授: 李振綱
Cheng-kang Lee
口試委員: 陳秀美
Hsiu-mei Chen
王勝仕
Steven s.-s. Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 105
中文關鍵詞: 胺基苯硼酸磁性載體APTES多巴胺醣蛋白
外文關鍵詞: 3-Aminophenylboronic acid, the magnetic nanoparticles, APTES, dopamine, glycoprotein.
相關次數: 點閱:292下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

硼酸分子可在微鹼性環境與醣類結構上之雙醇基團(cis-diol)產生親和性交互作用,本研究選用胺基苯硼酸(Aminophenylboronic acid)為親和配體接附於奈米級的磁性微粒上,利用硼酸之親和特性,吸附分離醣蛋白,達到簡易操作、快速省時之目的。
首先以共沉澱法製備粒徑為20-30 nm且具超順磁性的四氧化三鐵(Fe3O4)顆粒,分兩種方式進行兩階段修飾,第一種方式是先以多巴胺(Dopamine),第二種方式則是先以胺基矽烷aminopropyltriethoxysilane(APTES)修飾磁粒表面,分別可測得表面胺基含量為0.986 mmol/g DW與1.63 mmol/g DW,第二階段再利用戊二醛固定胺基苯硼酸於磁粒表面,分別可測得表面硼酸約有0.334 mmol/ g DW與0.516 mmol/g DW,所製備硼酸修飾後之磁粒仍具有磁性強度約68 emu/g。
此硼酸配體磁性微粒,在pH 9、50 mM HEPES buffer (20 mM Mg2+,10 mM NaCl)中有最佳吸附醣蛋白HRP的效果。多巴胺與矽化修飾硼酸配體磁粒對HRP之最大吸附量,由Langmuir恆溫吸附模式可分別算出約60.24與135.69 mg/g DW,但在使用 1 mg/ml HRP濃度下,實際吸附約為26與43 mg/g DW。再以200 mM山梨糖醇溶液脫附,可分別得到約2,000與10,000 U/g DW HRP活性。
硼酸配體磁性微粒可應用於多數的醣化蛋白純化,從血清中純化抗體(IgG),以及雞蛋蛋清中Ovotransferrin、Ovalbumin、Ovoflavoprotien三種醣蛋白,吸附結果具有專一性,可有效純化濃縮醣蛋白;由SDS-PAGE電泳實驗分析,對醣蛋白的吸附量為矽化修飾硼酸配體磁粒>商業Clontech硼酸膠體>多巴胺修飾硼酸配體磁粒。


Taking advantages of the specific affinity interaction between 1,2-cis diol of glycoproteins and the boronic acid at mild alkaline conditon, we immobilized 3-aminophenylboronic acid as an affinity ligand on the surface modified magnetic nanoparticles for rapid and efficient enrichment of glycoproteins.
The magnetic nanoparticles (magnetite; Fe3O4) (MNP) were prepared by coprecipitation of Fe2+ and Fe3+ ions in the presence of base. The nanoparticles were about 20 - 30 nm in diameter and superparamagnetic as determined by TEM and SQUID, respectively. To obtain amino-functional surface on magnetic nanoparticles, we treated the the MNP with dopamine and 3-aminopropyltriethoxysilane (APTES) and obtained 0.986 and 1.63 mmol/g DW (dry weight) primary amino-group on the surface, respectively. Then ligand, aminophenylboronic acid was immobilized on magnetic nanoparticle via glutaraldehyde coupling. Approximately, 0.334 and 0.516 mmol/g DW of ligand was immobilized on the two different modified magentic nanoparticles, respectively. High saturated magnetism (68 emu/g) of the magnetic nanoparticles with boric acid functionalized on surface still can be obtained.
Horseradish peroxidase (HRP) was used as a model glycoprotein to study the affinity adsorption capacity of the as-prepared boronic acid-MNP. The adsorption was done in 50 mM HEPES buffer (20 mM Mg2+ and 10 mM NaCl) at pH 9 and room temperature. Langmuir adsorption model can be used to describe the adsorption isotherm and with maximum adsorption capacity Qmax of 60.34 and 135.60 mg/g DW for the dopamine and silane modified MNP, respectively. Based on HRP activity desorbed from the magnetic affinity absorbents by 200 mM sorbitol, the silane based MNP adsorbent shows 10,000 U/g DW which is much higher than that obtained from dopamine-based one (2,000 U/g DW).
The boronic acid surface functionalized magnetic nanoparticles also demonstrated selective capture capacity toward glycoproteins in serum and egg white as observed from SDS-PAGE analysis. As compared with Clontech’s commercial boronic acid resin, the boronic acid modified MNP prepared in this study shows the comparable affinity adsorption capacity as shown in the isolation of immunoglobulin from human serum and Ovotransferrin as well as ovalbumin from egg white.

中文摘要 I Abstract III 目錄 IV 圖目錄 VII 表目錄 IX 第一章 緒論 1 1.1 研究背景與目的 1 1.2 研究內容簡介 2 第二章 文獻回顧 4 2.1 醣蛋白簡介 4 2.1.1 基本性質 5 2.1.2 純化應用 7 2.1.2.1 凝集素親和性層析 7 2.1.2.2 聯胺化學反應 9 2.1.2.3 硼酸親和配體親和層析 9 2.1.3 山葵過氧化酶(HRP) 10 2.2 硼酸親和配體 12 2.2.1 性質與作用原理 12 2.2.2 親和層析應用 14 2.2.3 固定化之技術 16 2.3 奈米磁性載體技術 19 2.3.1 奈米磁性載體 19 2.3.2 磁性氧化鐵奈米微粒之製備與修飾方法 20 2.3.2.1 化學沉澱製備方法 21 2.3.2.2 表面修飾方法 22 第三章 實驗材料與方法 29 3.1 實驗流程 29 3.2 實驗材料 30 3.2.1 純山葵過氧化酶(HRP) 30 3.2.2 新鮮山葵 31 3.2.3 血清 31 3.3 實驗藥品 31 3.4 各式緩衝液與反應液 33 3.4.1 胺基含量反應液 33 3.4.2 HRP活性測試反應液 34 3.4.3 蛋白質電泳反應液 34 3.4.4 硼酸親和配體磁性微粒吸附山葵過氧化氫酶 35 3.5 實驗設備 35 3.6 實驗方法 37 3.6.1 磁性微粒四氧化三鐵之製備 37 3.6.2 磁性微粒修飾胺基 37 3.6.2.1 Aminopropyltriethoxysilane修飾法 37 3.6.2.2 Dopamine hydrochloride 修飾法 38 3.6.3 磁性微粒固定化硼酸配體 39 3.6.4 胺基含量測定方法 40 3.6.5 硼酸親和配體磁性微粒吸附山葵過氧化氫酶(HRP) 41 3.6.5.1 動態吸附 41 3.6.5.2 pH對吸附量之影響 42 3.6.5.3 NaCl濃度對吸附量之影響 42 3.6.5.4 不同溶液與離子對吸附量之影響 42 3.6.5.5 山梨糖醇脫附HRP之回收活性 43 3.6.6 蛋白質濃度分析 43 3.6.7 蛋白質電泳分析 44 3.6.8 HRP酵素活性分析 46 3.6.9 硼酸配體磁性微粒純化醣化蛋白之應用 46 3.6.9.1 新鮮山葵粗萃液前處理 46 3.6.9.2 純化新鮮山葵中的山葵過氧化酶(HRP) 47 3.6.9.3 純化血清中的抗體(IgG) 47 3.6.9.4 純化雞蛋蛋清中的醣蛋白 47 3.7 分析儀器與方法 48 3.7.1 感應偶合電漿放射光譜(ICP-AES) 48 3.7.2 X光繞射儀(XRD) 48 3.7.3 傅立葉轉換紅外線光譜儀(FTIR) 49 3.7.4 超導量子干涉磁量儀(SQUID) 49 3.7.5 熱重分析儀(TGA) 49 3.7.6 界達電位分析儀(Zeta-potential) 50 3.7.7 掃描式電子顯微鏡(SEM) 50 3.7.8 掃描穿透式電子顯微鏡(TEM) 51 第四章 結果與討論 52 4.1 磁性微粒成分與結構分析 52 4.1.1 磁性微粒四氧化三鐵製備與修飾 52 4.1.1.1 磁性微粒四氧化三鐵之製備 52 4.1.1.2 磁性微粒四氧化三鐵之修飾 53 4.1.2 OPA法測量胺基含量 55 4.1.3 感應偶合電漿放射光譜(ICP-AES)分析表面硼酸接附量 57 4.1.4 X光繞射儀(XRD)分析 58 4.1.5 超導量子干涉磁量儀(SQUID)分析 60 4.1.6 傅立葉轉換紅外線光譜儀(FTIR)分析 62 4.1.7 熱重分析儀(TGA)分析 65 4.1.8 掃描式電子顯微鏡(SEM)分析 67 4.1.9 穿透式電子顯微鏡(TEM)分析 69 4.1.10 界達電位分析儀(Zeta-potential)分析 71 4.2 硼酸配體磁性微粒吸附純山葵過氧化酶(HRP) 72 4.2.1 動態吸附 72 4.2.2 pH值對吸附量之影響 73 4.2.3 NaCl濃度對吸附量之影響 74 4.2.4 不同溶液與離子對吸附量之影響 75 4.2.5 山梨糖醇脫附HRP之回收活性 79 4.3 硼酸配體磁性微粒純化醣蛋白之應用 82 4.3.1 純化新鮮山葵中的山葵過氧化酶(HRP) 83 4.3.2 純化血清中的抗體(IgG) 84 4.3.3 純化雞蛋蛋清中的醣蛋白 85 第五章 結論 87 參考文獻 89

Adams, J., et al. (1998). Potent and selective inhibitors of the proteasome: Dipeptidyl boronic acids. Bioorganic & Medicinal Chemistry Letters, 8(4), 333-338. doi: 10.1016/s0960-894x(98)00029-8
Babes, L., et al. (1999). Synthesis of Iron Oxide Nanoparticles Used as MRI Contrast Agents: A Parametric Study. Journal of Colloid and Interface Science, 212(2), 474-482. doi: 10.1006/jcis.1998.6053
Barker, S. A., et al. (1973). The use of poly(4-vinylbenzeneboronic acid) resins in the fractionation and interconversion of carbohydrates. Carbohydrate Research, 26(1), 55-64. doi: 10.1016/s0008-6215(00)85021-1
Birch, H. E., & Schreiber, G. (1986). Transcriptional regulation of plasma protein synthesis during inflammation. Journal of Biological Chemistry, 261(18), 8077-8080.
Bosch, L. I., et al. (2004). Binary and ternary phenylboronic acid complexes with saccharides and Lewis bases. Tetrahedron, 60(49), 11175-11190. doi: 10.1016/j.tet.2004.08.046
Brena, B. M., et al. (1992). Selective adsorption of immunoglobulins and glucosylated proteins on phenylboronate-agarose. Journal of Chromatography A, 604(1), 109-115. doi: 10.1016/0021-9673(92)85535-2
Bruce Alberts, A. J., Julian Lewis, Martin Raff, Keith Roberts, and Peter Walter. (2002). Molecular Biology of the Cell (4 ed.): New York: Garland Science.
Campbell, P. N., & Smith, A. D. (2008). 圖解生物化學: 台灣愛斯唯爾有限公司.
Carlsson, G. H., et al. (2004). Complexes of Horseradish Peroxidase with Formate, Acetate, and Carbon Monoxide†. Biochemistry, 44(2), 635-642. doi: 10.1021/bi0483211
Choppin, P. W., & Scheid, A. (1980). The Role of Viral Glycoproteins in Adsorption, Penetration, and Pathogenicity of Viruses. Review of Infectious Diseases, 2(1), 40-61. doi: 10.1093/clinids/2.1.40
Chu, C., & Liu, R. (2011). Application of click chemistry on preparation of separation materials for liquid chromatography. Chemical Society Reviews, 40(5), 2177-2188.
Cohen, R. M., et al. (2003). Discordance Between HbA1c and Fructosamine. Diabetes Care, 26(1), 163-167. doi: 10.2337/diacare.26.1.163
Cordes, D. B., et al. (2006). Fluorescent Quantum Dots with Boronic Acid Substituted Viologens To Sense Glucose in Aqueous Solution. Angewandte Chemie International Edition, 45(23), 3829-3832. doi: 10.1002/anie.200504390
Corriu, R., et al. (2004). Nanoporous materials: a good opportunity for nanosciences. Journal of Organometallic Chemistry, 689(24), 4437-4450. doi: 10.1016/j.jorganchem.2004.07.064
Dell, A., & Morris, H. R. (2001). Glycoprotein Structure Determination by Mass Spectrometry. Science, 291(5512), 2351-2356. doi: 10.1126/science.1058890
Deng, Y., et al. (2007). Superparamagnetic High-Magnetization Microspheres with an Fe3O4@SiO2 Core and Perpendicularly Aligned Mesoporous SiO2 Shell for Removal of Microcystins. Journal of the American Chemical Society, 130(1), 28-29. doi: 10.1021/ja0777584
Edwards, J. O., et al. (1955). The Structure of the Aqueous Borate Ion. Journal of the American Chemical Society, 77(2), 266-268. doi: 10.1021/ja01607a005
Etzel, M. R., & Bund, T. (2011). Monoliths for the purification of whey protein–dextran conjugates. Journal of Chromatography A, 1218(17), 2445-2450. doi: 10.1016/j.chroma.2011.01.025
Fried, T., et al. (2001). Ordered Two-Dimensional Arrays of Ferrite Nanoparticles. Advanced Materials, 13(15), 1158-1161. doi: 10.1002/1521-4095(200108)13:15<1158::aid-adma1158>3.0.co;2-6
Fujita, N., et al. (2008). Boronic Acids in Molecular Self-Assembly. Chemistry – An Asian Journal, 3(7), 1076-1091. doi: 10.1002/asia.200800069
Gajhede M, S. D., Henriksen A, Smith AT, Poulos TL. (1997). Crystal structure of horseradish peroxidase C at 2.15 A resolution. Nat Struct Biol., 4(12).
Gao, C., et al. (2010). Functionalizable and ultra-low fouling zwitterionic surfaces via adhesive mussel mimetic linkages. Biomaterials, 31(7), 1486-1492. doi: 10.1016/j.biomaterials.2009.11.025
Gass, J., et al. (2006). Superparamagnetic Polymer Nanocomposites with Uniform Fe3O4 Nanoparticle Dispersions. Advanced Functional Materials, 16(1), 71-75. doi: 10.1002/adfm.200500335
Gawaz, M., et al. (2005). Platelets in inflammation and atherogenesis. The Journal of Clinical Investigation, 115(12), 3378-3384.
Ge, Q., et al. (2010). Hydrophilic Superparamagnetic Nanoparticles: Synthesis, Characterization, and Performance in Forward Osmosis Processes. Industrial & Engineering Chemistry Research, 50(1), 382-388. doi: 10.1021/ie101013w
Goon, I. Y., et al. (2009). Fabrication and Dispersion of Gold-Shell-Protected Magnetite Nanoparticles: Systematic Control Using Polyethyleneimine. Chemistry of Materials, 21(4), 673-681. doi: 10.1021/cm8025329
Gupta, A. K., & Wells, S. (2004). Surface-modified superparamagnetic nanoparticles for drug delivery: preparation, characterization, and cytotoxicity studies. NanoBioscience, IEEE Transactions on, 3(1), 66-73. doi: 10.1109/tnb.2003.820277
Hageman, J. H., & Kuehn, G. D. (1992). Boronic Acid Matrices for the Affinity Purification of Glycoproteins and Enzymes (Vol. 11, pp. 45-71).
Hall, D. G. (2006). Structure, Properties, and Preparation of Boronic Acid Derivatives. Overview of Their Reactions and Applications Boronic Acids (pp. 1-99): Wiley-VCH Verlag GmbH & Co. KGaA.
Hench, L. L., & West, J. K. (1990). The sol-gel process. Chemical Reviews, 90(1), 33-72. doi: 10.1021/cr00099a003
Hirabayashi, J. (2004). Lectin-based structural glycomics: Glycoproteomics and glycan profiling. Glycoconjugate Journal, 21(1), 35-40. doi: 10.1023/B:GLYC.0000043745.18988.a1
James, T. D., et al. (1996). Saccharide Sensing with Molecular Receptors Based on Boronic Acid. Angewandte Chemie International Edition in English, 35(17), 1910-1922. doi: 10.1002/anie.199619101
Jiang, W., et al. (2004). Preparation and properties of superparamagnetic nanoparticles with narrow size distribution and biocompatible. Journal of Magnetism and Magnetic Materials, 283(2–3), 210-214. doi: 10.1016/j.jmmm.2004.05.022
Jingting, C., et al. (2011). Preparation and characterization of magnetic nanoparticles containing Fe(3)O(4)-dextran-anti-β-human chorionic gonadotropin, a new generation choriocarcinoma-specific gene vector. International journal of nanomedicine, 6, 285-294.
Johnson, B. J. B. (1981). Synthesis of a nitrobenzeneboronic acid-substituted polyacrylamide and its use in purifying isoaccepting transfer ribonucleic acids. Biochemistry, 20(21), 6103-6108. doi: 10.1021/bi00524a029
Jolivet, J. P. (1994). De la Solution a` l’Oxyde; : Inter Editions.
Jung, J., et al. (2011). Specialization of endoplasmic reticulum chaperones for the folding and function of myelin glycoproteins P0 and PMP22. FASEB Journal, 25(11), 3929-3937.
Kane, R. C., et al. (2003). VelcadeR: U.S. FDA Approval for the Treatment of Multiple Myeloma Progressing on Prior Therapy. The Oncologist, 8(6), 508-513. doi: 10.1634/theoncologist.8-6-508
Karas, M., et al. (2000). Nano-electrospray ionization mass spectrometry: addressing analytical problems beyond routine. Fresenius' Journal of Analytical Chemistry, 366(6), 669-676. doi: 10.1007/s002160051561
Ko, G. T. C., et al. (1998). Combined Use of a Fasting Plasma Glucose Concentration and HbA1c or Fructosamine Predicts the Likelihood of Having Diabetes in High-Risk Subjects. Diabetes Care, 21(8), 1221-1225. doi: 10.2337/diacare.21.8.1221
Koyama, T., & Terauchi, K.-i. (1996). Synthesis and application of boronic acid-immobilized porous polymer particles: a novel packing for high-performance liquid affinity chromatography. Journal of Chromatography B: Biomedical Sciences and Applications, 679(1–2), 31-40. doi: 10.1016/0378-4347(96)00006-0
Lai, Y.-C., & Lin, S.-C. (2005). Application of immobilized horseradish peroxidase for the removal of p-chlorophenol from aqueous solution. Process Biochemistry, 40(3–4), 1167-1174. doi: 10.1016/j.procbio.2004.04.009
Lee, H., et al. (2007). Mussel-Inspired Surface Chemistry for Multifunctional Coatings. Science, 318(5849), 426-430. doi: 10.1126/science.1147241
Lee, J., et al. (1996). Preparation of Ultrafine Fe3O4 Particles by Precipitation in the Presence of PVA at High pH. Journal of Colloid and Interface Science, 177(2), 490-494.
Lin, Z.-A., et al. (2011). Synthesis of magnetic nanoparticles with immobilized aminophenylboronic acid for selective capture of glycoproteins. Journal of Materials Chemistry, 21(2), 518-524.
Lisanti, M. P., & Rodriguez-Boulan, E. (1990). Glycophospholipid membrane anchoring provides clues to the mechanism of protein sorting in polarized epithelial cells. Trends in Biochemical Sciences, 15(3), 113-118. doi: 10.1016/0968-0004(90)90195-h
Lorand, J. P., & Edwards, J. O. (1959). Polyol Complexes and Structure of the Benzeneboronate Ion. The Journal of Organic Chemistry, 24(6), 769-774. doi: 10.1021/jo01088a011
Lu, A. T., & Whitaker, J. R. (1974). SOME FACTORS AFFECTING RATES OF HEAT INACTIVATION AND REACTIVATION OF HORSERADISH PEROXIDASE. Journal of Food Science, 39(6), 1173-1178. doi: 10.1111/j.1365-2621.1974.tb07347.x
M Mohapatra, S. A. (2010). Synthesis and applications of nano-structured iron oxides/hydroxides – a review. International Journal of Engineering, Science and Technology, 2(8), 127-146.
Mader, H. S., & Wolfbeis, O. S. (2008). Boronic acid based probes for microdetermination of saccharides and glycosylated biomolecules. Microchimica Acta, 162(1), 1-34. doi: 10.1007/s00604-008-0947-8
Massart, R. (1981). Preparation of aqueous magnetic liquids in alkaline and acidic media. Magnetics, IEEE Transactions on, 17(2), 1247-1248. doi: 10.1109/tmag.1981.1061188
Michaelis, A., & Becker, P. (1880). Ueber Monophenylborchlorid und die Valenz des Bors. Berichte der deutschen chemischen Gesellschaft, 13(1), 58-61. doi: 10.1002/cber.18800130118
O'Shannessy, D. J., & Hoffman, W. L. (1987). Site-Directed Immobilization of Glycoproteins on Hydrazide-Containing Solid Supports. Biotechnology and Applied Biochemistry, 9(6), 488-496. doi: 10.1111/j.1470-8744.1987.tb00492.x
Pan, B.-f., et al. (2005). Dendrimer modified magnetite nanoparticles for protein immobilization. Journal of Colloid and Interface Science, 284(1), 1-6. doi: 10.1016/j.jcis.2004.09.073
Pham, T. A., et al. (2010). Facile preparation of boronic acid functionalized Fe-core/Au-shell magnetic nanoparticles for covalent immobilization of adenosine. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 370(1–3), 95-101. doi: 10.1016/j.colsurfa.2010.08.053
Qi, D., et al. (2010). Facile Synthesis of Mercaptophenylboronic Acid-Functionalized Core−Shell Structure Fe3O4@C@Au Magnetic Microspheres for Selective Enrichment of Glycopeptides and Glycoproteins. The Journal of Physical Chemistry C, 114(20), 9221-9226. doi: 10.1021/jp9114404
Ramachandran, P., et al. (2006). Identification of N-Linked Glycoproteins in Human Saliva by Glycoprotein Capture and Mass Spectrometry. Journal of Proteome Research, 5(6), 1493-1503. doi: 10.1021/pr050492k
Reitter, J. N., et al. (1998). A role for carbohydrates in immune evasion in AIDS. [10.1038/nm0698-679]. Nat Med, 4(6), 679-684.
Ren, Y., et al. (2011). Facile, high efficiency immobilization of lipase enzyme on magnetic iron oxide nanoparticles via a biomimetic coating. BMC Biotechnology, 11(1), 63.
Rennard, S. I., et al. (1980). Enzyme-linked immunoassay (ELISA) for connective tissue components. Analytical Biochemistry, 104(1), 205-214. doi: 10.1016/0003-2697(80)90300-0
Rizzuto, C. D., et al. (1998). A Conserved HIV gp120 Glycoprotein Structure Involved in Chemokine Receptor Binding. Science, 280(5371), 1949-1953. doi: 10.1126/science.280.5371.1949
Robinson, J. S., et al. (1988). Protein sorting in Saccharomyces cerevisiae: isolation of mutants defective in the delivery and processing of multiple vacuolar hydrolases. Molecular and Cellular Biology, 8(11), 4936-4948. doi: 10.1128/mcb.8.11.4936
Rosenberg, M., et al. (1972). Interactions of nucleotides, polynucleotides, and nucleic acids with dihydroxyboryl-substituted celluloses. Biochemistry, 11(19), 3623-3628. doi: 10.1021/bi00769a020
Rudd, P. M., & Dwek, R. A. (1997). Rapid, sensitive sequencing of oligosaccharides from glycoproteins. Current Opinion in Biotechnology, 8(4), 488-497. doi: 10.1016/s0958-1669(97)80073-0
Ruhaak, L. R., et al. (2010). Glycan labeling strategies and their use in identification and quantification. Analytical and Bioanalytical Chemistry, 397(8), 3457-3481. doi: 10.1007/s00216-010-3532-z
S J Cartwright, S. G. W. (1984). Purification of beta-lactamases by affinity chromatography on phenylboronic acid-agarose. Biochem J., 221(2).
Saha, A., et al. (2012). O-Allylation of phenols with allylic acetates in aqueous media using a magnetically separable catalytic system. Green Chemistry, 14(1), 67-71.
Schott, H., et al. (1973). Dihydroxyboryl-substituted methacrylic polymer for the column chromatographic separation of mononucleotides, oligonucleotides, and transfer ribonucleic acid. Biochemistry, 12(5), 932-938. doi: 10.1021/bi00729a022
Seymour, E., & Frechet, J. M. J. (1976a). Separation of cis diols from isomeric cis-trans mixtures by selective coupling to a regenerable solid support. Tetrahedron Letters, 17(41), 3669-3672. doi: 10.1016/s0040-4039(00)93077-6
Seymour, E., & Frechet, J. M. J. (1976b). Use of polymers as protecting groups in organic synthesis. IV. Applications of a polystyrlboronic acid resin to the selective functionalization of some glycosides. Tetrahedron Letters, 17(15), 1149-1152. doi: 10.1016/s0040-4039(00)78003-8
Siqueira Petri, D. F., et al. (1999). An Improved Method for the Assembly of Amino-Terminated Monolayers on SiO2 and the Vapor Deposition of Gold Layers. Langmuir, 15(13), 4520-4523. doi: 10.1021/la981379u
Smoum, R., et al. (2006). Chitosan−Pentaglycine−Phenylboronic Acid Conjugate:  A Potential Colon-Specific Platform for Calcitonin. Bioconjugate Chemistry, 17(4), 1000-1007. doi: 10.1021/bc050357y
Song, S. Y., & Yoon, H. C. (2009). Boronic acid-modified thin film interface for specific binding of glycated hemoglobin (HbA1c) and electrochemical biosensing. Sensors and Actuators B: Chemical, 140(1), 233-239. doi: 10.1016/j.snb.2009.04.057
Stanley, P., et al. (1975). Selection and characterization of eight phenotypically distinct lines of lectin-resistant chinese hamster ovary cells. Cell, 6(2), 121-128. doi: 10.1016/0092-8674(75)90002-1
Tahara, Y., & Shima, K. (1995). Kinetics of HbA1c, Glycated Albumin, and Fructosamine and Analysis of Their Weight Functions Against Preceding Plasma Glucose Level. Diabetes Care, 18(4), 440-447. doi: 10.2337/diacare.18.4.440
Takada, A., et al. (1997). A system for functional analysis of Ebola virus glycoprotein. Proceedings of the National Academy of Sciences, 94(26), 14764-14769.
Tanaka, T., & Matsunaga, T. (2001). Detection of HbA1c by boronate affinity immunoassay using bacterial magnetic particles. Biosensors and Bioelectronics, 16(9–12), 1089-1094. doi: 10.1016/s0956-5663(01)00187-7
Tartaj, P., et al. (2006). chapter 5 Synthesis, Properties and Biomedical Applications of Magnetic Nanoparticles. In K. H. J. Buschow (Ed.), Handbook of Magnetic Materials (Vol. Volume 16, pp. 403): Elsevier.
Taylor, P. R., et al. (2005). MACROPHAGE RECEPTORS AND IMMUNE RECOGNITION. Annual Review of Immunology, 23(1), 901-944. doi: doi:10.1146/annurev.immunol.23.021704.115816
Tolbert, T. Glycoprotein Research, from http://mypage.iu.edu/~tjtlab/Glycoprotein%20Research.html
Varian, I. (2010). Phenylboronic Acid (PBA) Solid Phase Extraction Mechanisms and Applications.
Veitch, N. C. (2004). Horseradish peroxidase: a modern view of a classic enzyme. Phytochemistry, 65(3), 249-259. doi: 10.1016/j.phytochem.2003.10.022
Williams, R. A. (1992). Colloid and Surface Engineering: Applications in the Process Industries: Butterworth-Heinemann.
Wu, Y., et al. (2008). Phenylboronic acid immunoaffinity reactor coupled with flow injection chemiluminescence for determination of α-fetoprotein. Analytica Chimica Acta, 630(2), 186-193. doi: 10.1016/j.aca.2008.10.010
Xie, J., et al. (2007). Controlled PEGylation of Monodisperse Fe3O4 Nanoparticles for Reduced Non-Specific Uptake by Macrophage Cells. Advanced Materials, 19(20), 3163-3166. doi: 10.1002/adma.200701975
Xu, L. Q., et al. (2010). Dopamine-Induced Reduction and Functionalization of Graphene Oxide Nanosheets. Macromolecules, 43(20), 8336-8339. doi: 10.1021/ma101526k
Yamanouchi, T., et al. (1991). Comparison of 1,5-Anhydroglucitol, HbA1c, and Fructosamine for Detection of Diabetes Mellitus. Diabetes, 40(1), 52-57. doi: 10.2337/diab.40.1.52
Yang, P. F., & Lee, C. K. (2007). Hyaluronic acid interaction with chitosan-conjugated magnetite particles and its purification. Biochemical Engineering Journal, 33(3), 284-289. doi: 10.1016/j.bej.2006.11.010
Yang, Z., & Hancock, W. S. (2004). Approach to the comprehensive analysis of glycoproteins isolated from human serum using a multi-lectin affinity column. Journal of Chromatography A, 1053(1–2), 79-88. doi: 10.1016/j.chroma.2004.08.150
Ye, Q., et al. (2011). Bioinspired catecholic chemistry for surface modification. Chemical Society Reviews, 40(7), 4244-4258.
Yu, Y. Q., et al. (2007). Identification of N-Linked Glycosylation Sites Using Glycoprotein Digestion with Pronase Prior to MALDI Tandem Time-of-Flight Mass Spectrometry. Analytical Chemistry, 79(4), 1731-1738. doi: 10.1021/ac0616052
Zhang, M., et al. (2010). Preparation of IDA-Cu functionalized core-satellite Fe3O4/polydopamine/Au magnetic nanocomposites and their application for depletion of abundant protein in bovine blood. Journal of Materials Chemistry, 20(47), 10696-10704.
Zhang, Y., et al. (2006). Synthesis and Volume Phase Transitions of Glucose-Sensitive Microgels. Biomacromolecules, 7(11), 3196-3201. doi: 10.1021/bm060557s
Zhao, Y. Q., et al. (2009). Electrochemical characterization of in situ functionalized gold p-aminothiophenol self-assembled monolayer with 4-formylphenylboronic acid for recognition of sugars. Sensors and Actuators B: Chemical, 137(2), 722-726. doi: 10.1016/j.snb.2008.12.059
Adams, J., Behnke, M., Chen, S., Cruickshank, A. A., Dick, L. R., Grenier, L., . . . Stein, R. L. (1998). Potent and selective inhibitors of the proteasome: Dipeptidyl boronic acids. Bioorganic & Medicinal Chemistry Letters, 8(4), 333-338. doi: 10.1016/s0960-894x(98)00029-8
Ali, S. R., Ma, Y., Parajuli, R. R., Balogun, Y., Lai, W. Y. C., & He, H. (2007). A Nonoxidative Sensor Based on a Self-Doped Polyaniline/Carbon Nanotube Composite for Sensitive and Selective Detection of the Neurotransmitter Dopamine. Analytical Chemistry, 79(6), 2583-2587. doi: 10.1021/ac062068o
Babes, L., Denizot, B., amp, x, Tanguy, G., Le Jeune, J. J., & Jallet, P. (1999). Synthesis of Iron Oxide Nanoparticles Used as MRI Contrast Agents: A Parametric Study. Journal of Colloid and Interface Science, 212(2), 474-482. doi: 10.1006/jcis.1998.6053
Barker, S. A., Hatt, B. W., Somers, P. J., & Woodbury, R. R. (1973). The use of poly(4-vinylbenzeneboronic acid) resins in the fractionation and interconversion of carbohydrates. Carbohydrate Research, 26(1), 55-64. doi: 10.1016/s0008-6215(00)85021-1
Birch, H. E., & Schreiber, G. (1986). Transcriptional regulation of plasma protein synthesis during inflammation. Journal of Biological Chemistry, 261(18), 8077-8080.
Bosch, L. I., Fyles, T. M., & James, T. D. (2004). Binary and ternary phenylboronic acid complexes with saccharides and Lewis bases. Tetrahedron, 60(49), 11175-11190. doi: 10.1016/j.tet.2004.08.046
Brena, B. M., Batista-Viera, F., Ryden, L., & Porath, J. (1992). Selective adsorption of immunoglobulins and glucosylated proteins on phenylboronate-agarose. Journal of Chromatography A, 604(1), 109-115. doi: 10.1016/0021-9673(92)85535-2
Bruce Alberts, A. J., Julian Lewis, Martin Raff, Keith Roberts, and Peter Walter. (2002). Molecular Biology of the Cell (4 ed.): New York: Garland Science.
Campbell, P. N., & Smith, A. D. (2008). 圖解生物化學: 台灣愛斯唯爾有限公司.
Carlsson, G. H., Nicholls, P., Svistunenko, D., Berglund, G. I., & Hajdu, J. (2004). Complexes of Horseradish Peroxidase with Formate, Acetate, and Carbon Monoxide†. Biochemistry, 44(2), 635-642. doi: 10.1021/bi0483211
Choppin, P. W., & Scheid, A. (1980). The Role of Viral Glycoproteins in Adsorption, Penetration, and Pathogenicity of Viruses. Review of Infectious Diseases, 2(1), 40-61. doi: 10.1093/clinids/2.1.40
Chu, C., & Liu, R. (2011). Application of click chemistry on preparation of separation materials for liquid chromatography. Chemical Society Reviews, 40(5), 2177-2188.
Cohen, R. M., Holmes, Y. R., Chenier, T. C., & Joiner, C. H. (2003). Discordance Between HbA1c and Fructosamine. Diabetes Care, 26(1), 163-167. doi: 10.2337/diacare.26.1.163
Cordes, D. B., Gamsey, S., & Singaram, B. (2006). Fluorescent Quantum Dots with Boronic Acid Substituted Viologens To Sense Glucose in Aqueous Solution. Angewandte Chemie International Edition, 45(23), 3829-3832. doi: 10.1002/anie.200504390
Corriu, R., Mehdi, A., & Reye, C. (2004). Nanoporous materials: a good opportunity for nanosciences. Journal of Organometallic Chemistry, 689(24), 4437-4450. doi: 10.1016/j.jorganchem.2004.07.064
Dell, A., & Morris, H. R. (2001). Glycoprotein Structure Determination by Mass Spectrometry. Science, 291(5512), 2351-2356. doi: 10.1126/science.1058890
Deng, Y., Qi, D., Deng, C., Zhang, X., & Zhao, D. (2007). Superparamagnetic High-Magnetization Microspheres with an Fe3O4@SiO2 Core and Perpendicularly Aligned Mesoporous SiO2 Shell for Removal of Microcystins. Journal of the American Chemical Society, 130(1), 28-29. doi: 10.1021/ja0777584
Edwards, J. O., Morrison, G. C., Ross, V. F., & Schultz, J. W. (1955). The Structure of the Aqueous Borate Ion. Journal of the American Chemical Society, 77(2), 266-268. doi: 10.1021/ja01607a005
Etzel, M. R., & Bund, T. (2011). Monoliths for the purification of whey protein–dextran conjugates. Journal of Chromatography A, 1218(17), 2445-2450. doi: 10.1016/j.chroma.2011.01.025
Fried, T., Shemer, G., & Markovich, G. (2001). Ordered Two-Dimensional Arrays of Ferrite Nanoparticles. Advanced Materials, 13(15), 1158-1161. doi: 10.1002/1521-4095(200108)13:15<1158::aid-adma1158>3.0.co;2-6
Fujita, N., Shinkai, S., & James, T. D. (2008). Boronic Acids in Molecular Self-Assembly. Chemistry – An Asian Journal, 3(7), 1076-1091. doi: 10.1002/asia.200800069
Gajhede M, S. D., Henriksen A, Smith AT, Poulos TL. (1997). Crystal structure of horseradish peroxidase C at 2.15 A resolution. Nat Struct Biol., 4(12).
Gao, C., Li, G., Xue, H., Yang, W., Zhang, F., & Jiang, S. (2010). Functionalizable and ultra-low fouling zwitterionic surfaces via adhesive mussel mimetic linkages. Biomaterials, 31(7), 1486-1492. doi: 10.1016/j.biomaterials.2009.11.025
Gass, J., Poddar, P., Almand, J., Srinath, S., & Srikanth, H. (2006). Superparamagnetic Polymer Nanocomposites with Uniform Fe3O4 Nanoparticle Dispersions. Advanced Functional Materials, 16(1), 71-75. doi: 10.1002/adfm.200500335
Gawaz, M., Langer, H., & May, A. E. (2005). Platelets in inflammation and atherogenesis. The Journal of Clinical Investigation, 115(12), 3378-3384.
Ge, Q., Su, J., Chung, T.-S., & Amy, G. (2010). Hydrophilic Superparamagnetic Nanoparticles: Synthesis, Characterization, and Performance in Forward Osmosis Processes. Industrial & Engineering Chemistry Research, 50(1), 382-388. doi: 10.1021/ie101013w
Goon, I. Y., Lai, L. M. H., Lim, M., Munroe, P., Gooding, J. J., & Amal, R. (2009). Fabrication and Dispersion of Gold-Shell-Protected Magnetite Nanoparticles: Systematic Control Using Polyethyleneimine. Chemistry of Materials, 21(4), 673-681. doi: 10.1021/cm8025329
Gupta, A. K., & Wells, S. (2004). Surface-modified superparamagnetic nanoparticles for drug delivery: preparation, characterization, and cytotoxicity studies. NanoBioscience, IEEE Transactions on, 3(1), 66-73. doi: 10.1109/tnb.2003.820277
Hall, D. G. (2006). Structure, Properties, and Preparation of Boronic Acid Derivatives. Overview of Their Reactions and Applications Boronic Acids (pp. 1-99): Wiley-VCH Verlag GmbH & Co. KGaA.
Hench, L. L., & West, J. K. (1990). The sol-gel process. Chemical Reviews, 90(1), 33-72. doi: 10.1021/cr00099a003
Hirabayashi, J. (2004). Lectin-based structural glycomics: Glycoproteomics and glycan profiling. Glycoconjugate Journal, 21(1), 35-40. doi: 10.1023/B:GLYC.0000043745.18988.a1
James, T. D., Sandanayake, K. R. A. S., & Shinkai, S. (1996). Saccharide Sensing with Molecular Receptors Based on Boronic Acid. Angewandte Chemie International Edition in English, 35(17), 1910-1922. doi: 10.1002/anie.199619101
Janolino, V., & Swaisgood, H. (1992). A spectrophotometric assay for solid phase primary amino groups. Appl Biochem Biotechnol, 36(2), 81-85. doi: 10.1007/bf02929687
Jiang, W., Yang, H. C., Yang, S. Y., Horng, H. E., Hung, J. C., Chen, Y. C., & Hong, C.-Y. (2004). Preparation and properties of superparamagnetic nanoparticles with narrow size distribution and biocompatible. Journal of Magnetism and Magnetic Materials, 283(2–3), 210-214. doi: 10.1016/j.jmmm.2004.05.022
Jingting, C., Huining, L., & Yi, Z. (2011). Preparation and characterization of magnetic nanoparticles containing Fe(3)O(4)-dextran-anti-β-human chorionic gonadotropin, a new generation choriocarcinoma-specific gene vector. International journal of nanomedicine, 6, 285-294.
Johnson, B. J. B. (1981). Synthesis of a nitrobenzeneboronic acid-substituted polyacrylamide and its use in purifying isoaccepting transfer ribonucleic acids. Biochemistry, 20(21), 6103-6108. doi: 10.1021/bi00524a029
Jolivet, J. P. (1994). De la Solution a` l’Oxyde; : Inter Editions.
Jung, J., Coe, H., & Michalak, M. (2011). Specialization of endoplasmic reticulum chaperones for the folding and function of myelin glycoproteins P0 and PMP22. FASEB Journal, 25(11), 3929-3937.
Kane, R. C., Bross, P. F., Farrell, A. T., & Pazdur, R. (2003). VelcadeR: U.S. FDA Approval for the Treatment of Multiple Myeloma Progressing on Prior Therapy. The Oncologist, 8(6), 508-513. doi: 10.1634/theoncologist.8-6-508
Karas, M., Bahr, U., & Dulcks, T. (2000). Nano-electrospray ionization mass spectrometry: addressing analytical problems beyond routine. Fresenius' Journal of Analytical Chemistry, 366(6), 669-676. doi: 10.1007/s002160051561
Ko, G. T. C., Chan, J. C. N., Yeung, V. T. F., Chow, C.-C., Tsang, L. W. W., Li, J. K. Y., . . . Cockram, C. S. (1998). Combined Use of a Fasting Plasma Glucose Concentration and HbA1c or Fructosamine Predicts the Likelihood of Having Diabetes in High-Risk Subjects. Diabetes Care, 21(8), 1221-1225. doi: 10.2337/diacare.21.8.1221
Koyama, T., & Terauchi, K.-i. (1996). Synthesis and application of boronic acid-immobilized porous polymer particles: a novel packing for high-performance liquid affinity chromatography. Journal of Chromatography B: Biomedical Sciences and Applications, 679(1–2), 31-40. doi: 10.1016/0378-4347(96)00006-0
Kuivila, H. G., Keough, A. H., & Soboczenski, E. J. (1954). Areneboronates from Diols and Polyols1. The Journal of Organic Chemistry, 19(5), 780-783. doi: 10.1021/jo01370a013
Lai, Y.-C., & Lin, S.-C. (2005). Application of immobilized horseradish peroxidase for the removal of p-chlorophenol from aqueous solution. Process Biochemistry, 40(3–4), 1167-1174. doi: 10.1016/j.procbio.2004.04.009
Lee, H., Dellatore, S. M., Miller, W. M., & Messersmith, P. B. (2007). Mussel-Inspired Surface Chemistry for Multifunctional Coatings. Science, 318(5849), 426-430. doi: 10.1126/science.1147241
Lee, J., Isobe, T., & Senna, M. (1996). Preparation of Ultrafine Fe3O4 Particles by Precipitation in the Presence of PVA at High pH. Journal of Colloid and Interface Science, 177(2), 490-494.
Lin, Z.-A., Zheng, J.-N., Lin, F., Zhang, L., Cai, Z., & Chen, G.-N. (2011). Synthesis of magnetic nanoparticles with immobilized aminophenylboronic acid for selective capture of glycoproteins. Journal of Materials Chemistry, 21(2), 518-524.
Lisanti, M. P., & Rodriguez-Boulan, E. (1990). Glycophospholipid membrane anchoring provides clues to the mechanism of protein sorting in polarized epithelial cells. Trends in Biochemical Sciences, 15(3), 113-118. doi: 10.1016/0968-0004(90)90195-h
Lorand, J. P., & Edwards, J. O. (1959). Polyol Complexes and Structure of the Benzeneboronate Ion. The Journal of Organic Chemistry, 24(6), 769-774. doi: 10.1021/jo01088a011
Lu, A. T., & Whitaker, J. R. (1974). Some Factors Affecting Rates of Heat Inactivation and Reactivation of Horseradish Peroxidase. Journal of Food Science, 39(6), 1173-1178. doi: 10.1111/j.1365-2621.1974.tb07347.x
M Mohapatra, S. A. (2010). Synthesis and applications of nano-structured iron oxides/hydroxides – a review. International Journal of Engineering, Science and Technology, 2(8), 127-146.
Mader, H. S., & Wolfbeis, O. S. (2008). Boronic acid based probes for microdetermination of saccharides and glycosylated biomolecules. Microchimica Acta, 162(1), 1-34. doi: 10.1007/s00604-008-0947-8
Massart, R. (1981). Preparation of aqueous magnetic liquids in alkaline and acidic media. Magnetics, IEEE Transactions on, 17(2), 1247-1248. doi: 10.1109/tmag.1981.1061188
Michaelis, A., & Becker, P. (1880). Ueber Monophenylborchlorid und die Valenz des Bors. Berichte der deutschen chemischen Gesellschaft, 13(1), 58-61. doi: 10.1002/cber.18800130118
O'Shannessy, D. J., & Hoffman, W. L. (1987). Site-Directed Immobilization of Glycoproteins on Hydrazide-Containing Solid Supports. Biotechnology and Applied Biochemistry, 9(6), 488-496. doi: 10.1111/j.1470-8744.1987.tb00492.x
Pan, B.-f., Gao, F., & Gu, H.-c. (2005). Dendrimer modified magnetite nanoparticles for protein immobilization. Journal of Colloid and Interface Science, 284(1), 1-6. doi: 10.1016/j.jcis.2004.09.073
Pham, T. A., Kumar, N. A., & Jeong, Y. T. (2010). Facile preparation of boronic acid functionalized Fe-core/Au-shell magnetic nanoparticles for covalent immobilization of adenosine. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 370(1–3), 95-101. doi: 10.1016/j.colsurfa.2010.08.053
Qi, D., Zhang, H., Tang, J., Deng, C., & Zhang, X. (2010). Facile Synthesis of Mercaptophenylboronic Acid-Functionalized Core−Shell Structure Fe3O4@C@Au Magnetic Microspheres for Selective Enrichment of Glycopeptides and Glycoproteins. The Journal of Physical Chemistry C, 114(20), 9221-9226. doi: 10.1021/jp9114404
Ramachandran, P., Boontheung, P., Xie, Y., Sondej, M., Wong, D. T., & Loo, J. A. (2006). Identification of N-Linked Glycoproteins in Human Saliva by Glycoprotein Capture and Mass Spectrometry. Journal of Proteome Research, 5(6), 1493-1503. doi: 10.1021/pr050492k
Reitter, J. N., Means, R. E., & Desrosiers, R. C. (1998). A role for carbohydrates in immune evasion in AIDS. [10.1038/nm0698-679]. Nat Med, 4(6), 679-684.
Ren, Y., Rivera, J., He, L., Kulkarni, H., Lee, D.-K., & Messersmith, P. (2011). Facile, high efficiency immobilization of lipase enzyme on magnetic iron oxide nanoparticles via a biomimetic coating. BMC Biotechnology, 11(1), 63.
Rennard, S. I., Berg, R., Martin, G. R., Foidart, J. M., & Robey, P. G. (1980). Enzyme-linked immunoassay (ELISA) for connective tissue components. Analytical Biochemistry, 104(1), 205-214. doi: 10.1016/0003-2697(80)90300-0
Rizzuto, C. D., Wyatt, R., Hernandez-Ramos, N., Sun, Y., Kwong, P. D., Hendrickson, W. A., & Sodroski, J. (1998). A Conserved HIV gp120 Glycoprotein Structure Involved in Chemokine Receptor Binding. Science, 280(5371), 1949-1953. doi: 10.1126/science.280.5371.1949
Robinson, J. S., Klionsky, D. J., Banta, L. M., & Emr, S. D. (1988). Protein sorting in Saccharomyces cerevisiae: isolation of mutants defective in the delivery and processing of multiple vacuolar hydrolases. Molecular and Cellular Biology, 8(11), 4936-4948. doi: 10.1128/mcb.8.11.4936
Rosenberg, M., Wiebers, J. L., & Gilham, P. T. (1972). Interactions of nucleotides, polynucleotides, and nucleic acids with dihydroxyboryl-substituted celluloses. Biochemistry, 11(19), 3623-3628. doi: 10.1021/bi00769a020
Rudd, P. M., & Dwek, R. A. (1997). Rapid, sensitive sequencing of oligosaccharides from glycoproteins. Current Opinion in Biotechnology, 8(4), 488-497. doi: 10.1016/s0958-1669(97)80073-0
Ruhaak, L. R., Zauner, G., Huhn, C., Bruggink, C., Deelder, A. M., & Wuhrer, M. (2010). Glycan labeling strategies and their use in identification and quantification. Analytical and Bioanalytical Chemistry, 397(8), 3457-3481. doi: 10.1007/s00216-010-3532-z
S J Cartwright, S. G. W. (1984). Purification of beta-lactamases by affinity chromatography on phenylboronic acid-agarose. Biochem J., 221(2).
Saha, A., Leazer, J., & Varma, R. S. (2012). O-Allylation of phenols with allylic acetates in aqueous media using a magnetically separable catalytic system. Green Chemistry, 14(1), 67-71.
Schott, H., Rudloff, E., Schmidt, P., Roychoudhury, R., & Koessel, H. (1973). Dihydroxyboryl-substituted methacrylic polymer for the column chromatographic separation of mononucleotides, oligonucleotides, and transfer ribonucleic acid. Biochemistry, 12(5), 932-938. doi: 10.1021/bi00729a022
Seymour, E., & Frechet, J. M. J. (1976a). Separation of cis diols from isomeric cis-trans mixtures by selective coupling to a regenerable solid support. Tetrahedron Letters, 17(41), 3669-3672. doi: 10.1016/s0040-4039(00)93077-6
Seymour, E., & Frechet, J. M. J. (1976b). Use of polymers as protecting groups in organic synthesis. IV. Applications of a polystyrlboronic acid resin to the selective functionalization of some glycosides. Tetrahedron Letters, 17(15), 1149-1152. doi: 10.1016/s0040-4039(00)78003-8
Siqueira Petri, D. F., Wenz, G., Schunk, P., & Schimmel, T. (1999). An Improved Method for the Assembly of Amino-Terminated Monolayers on SiO2 and the Vapor Deposition of Gold Layers. Langmuir, 15(13), 4520-4523. doi: 10.1021/la981379u
Skehel, J. J., & Wiley, D. C. (2000). Receptor Binding and Membrane Fusion in Virus Entry: The Influenza Hemagglutinin. Annual Review of Biochemistry, 69(1), 531-569. doi: doi:10.1146/annurev.biochem.69.1.531
Smoum, R., Rubinstein, A., & Srebnik, M. (2006). Chitosan−Pentaglycine−Phenylboronic Acid Conjugate:  A Potential Colon-Specific Platform for Calcitonin. Bioconjugate Chemistry, 17(4), 1000-1007. doi: 10.1021/bc050357y
Song, S. Y., & Yoon, H. C. (2009). Boronic acid-modified thin film interface for specific binding of glycated hemoglobin (HbA1c) and electrochemical biosensing. Sensors and Actuators B: Chemical, 140(1), 233-239. doi: 10.1016/j.snb.2009.04.057
Springsteen, G., & Wang, B. (2002). A detailed examination of boronic acid–diol complexation. Tetrahedron, 58(26), 5291-5300. doi: 10.1016/s0040-4020(02)00489-1
Stanley, P., Caillibot, V., & Siminovitch, L. (1975). Selection and characterization of eight phenotypically distinct lines of lectin-resistant chinese hamster ovary cells. Cell, 6(2), 121-128. doi: 10.1016/0092-8674(75)90002-1
Tahara, Y., & Shima, K. (1995). Kinetics of HbA1c, Glycated Albumin, and Fructosamine and Analysis of Their Weight Functions Against Preceding Plasma Glucose Level. Diabetes Care, 18(4), 440-447. doi: 10.2337/diacare.18.4.440
Takada, A., Robison, C., Goto, H., Sanchez, A., Murti, K. G., Whitt, M. A., & Kawaoka, Y. (1997). A system for functional analysis of Ebola virus glycoprotein. Proceedings of the National Academy of Sciences, 94(26), 14764-14769.
Tanaka, T., & Matsunaga, T. (2001). Detection of HbA1c by boronate affinity immunoassay using bacterial magnetic particles. Biosensors and Bioelectronics, 16(9–12), 1089-1094. doi: 10.1016/s0956-5663(01)00187-7
Tartaj, P., Morales, M. P., Veintemillas-Verdaguer, S., Gonzalez-Carreno, T., & Serna, C. J. (2006). chapter 5 Synthesis, Properties and Biomedical Applications of Magnetic Nanoparticles. In K. H. J. Buschow (Ed.), Handbook of Magnetic Materials (Vol. Volume 16, pp. 403): Elsevier.
Taylor, P. R., Martinez-Pomares, L., Stacey, M., Lin, H.-H., Brown, G. D., & Gordon, S. (2005). Macrophage Receptors and Immune Recognition. Annual Review of Immunology, 23(1), 901-944. doi: doi:10.1146/annurev.immunol.23.021704.115816
Tolbert, T. Glycoprotein Research, from http://mypage.iu.edu/~tjtlab/Glycoprotein%20Research.html
Varian, I. (2010). Phenylboronic Acid (PBA) Solid Phase Extraction Mechanisms and Applications.
Veitch, N. C. (2004). Horseradish peroxidase: a modern view of a classic enzyme. Phytochemistry, 65(3), 249-259. doi: 10.1016/j.phytochem.2003.10.022
Williams, R. A. (1992). Colloid and Surface Engineering: Applications in the Process Industries: Butterworth-Heinemann.
Wu, Y., Zhuang, Y., Liu, S., & He, L. (2008). Phenylboronic acid immunoaffinity reactor coupled with flow injection chemiluminescence for determination of α-fetoprotein. Analytica Chimica Acta, 630(2), 186-193. doi: 10.1016/j.aca.2008.10.010
Xie, J., Xu, C., Kohler, N., Hou, Y., & Sun, S. (2007). Controlled PEGylation of Monodisperse Fe3O4 Nanoparticles for Reduced Non-Specific Uptake by Macrophage Cells. Advanced Materials, 19(20), 3163-3166. doi: 10.1002/adma.200701975
Xu, L. Q., Yang, W. J., Neoh, K.-G., Kang, E.-T., & Fu, G. D. (2010). Dopamine-Induced Reduction and Functionalization of Graphene Oxide Nanosheets. Macromolecules, 43(20), 8336-8339. doi: 10.1021/ma101526k
Yamanouchi, T., Akanuma, Y., Toyota, T., Kuzuya, T., Kawai, T., Kawazu, S., . . . Kosaka, K. (1991). Comparison of 1,5-Anhydroglucitol, HbA1c, and Fructosamine for Detection of Diabetes Mellitus. Diabetes, 40(1), 52-57. doi: 10.2337/diab.40.1.52
Yang, P. F., & Lee, C. K. (2007). Hyaluronic acid interaction with chitosan-conjugated magnetite particles and its purification. Biochemical Engineering Journal, 33(3), 284-289. doi: 10.1016/j.bej.2006.11.010
Yang, Z., & Hancock, W. S. (2004). Approach to the comprehensive analysis of glycoproteins isolated from human serum using a multi-lectin affinity column. Journal of Chromatography A, 1053(1–2), 79-88. doi: 10.1016/j.chroma.2004.08.150
Ye, Q., Zhou, F., & Liu, W. (2011). Bioinspired catecholic chemistry for surface modification. Chemical Society Reviews, 40(7), 4244-4258.
Yu, Y. Q., Fournier, J., Gilar, M., & Gebler, J. C. (2007). Identification of N-Linked Glycosylation Sites Using Glycoprotein Digestion with Pronase Prior to MALDI Tandem Time-of-Flight Mass Spectrometry. Analytical Chemistry, 79(4), 1731-1738. doi: 10.1021/ac0616052
Zhang, M., He, X., Chen, L., & Zhang, Y. (2010). Preparation of IDA-Cu functionalized core-satellite Fe3O4/polydopamine/Au magnetic nanocomposites and their application for depletion of abundant protein in bovine blood. Journal of Materials Chemistry, 20(47), 10696-10704.
Zhang, Y., Guan, Y., & Zhou, S. (2006). Synthesis and Volume Phase Transitions of Glucose-Sensitive Microgels. Biomacromolecules, 7(11), 3196-3201. doi: 10.1021/bm060557s
Zhao, Y. Q., Luo, H. Q., & Li, N. B. (2009). Electrochemical characterization of in situ functionalized gold p-aminothiophenol self-assembled monolayer with 4-formylphenylboronic acid for recognition of sugars. Sensors and Actuators B: Chemical, 137(2), 722-726. doi: 10.1016/j.snb.2008.12.059
陳人豪. (2006). 磁性奈米粒子製備及其於電子波遮蔽之應用. 碩士, 國立中央大學, 桃園縣. Retrieved from http://ndltd.ncl.edu.tw/cgi-bin/gs32/gsweb.cgi?o=dnclcdr&s=id=%22094NCU05063015%22.&searchmode=basic

無法下載圖示 全文公開日期 2017/07/20 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE