簡易檢索 / 詳目顯示

研究生: 沐銳德
Raditya Noorachman Mobiliu
論文名稱: 用於引導神經及肌肉組織再生之支架
Scaffolds for Guided Neural Tissue Regeneration
指導教授: 楊銘乾
Ming-Chien Yang
口試委員: 劉定宇
Ting-Yu Liu
鄭詠馨
Yung-Hsin Cheng
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 69
中文關鍵詞: 聚乳酸臭氧處理聚乙二醇甲基丙烯酸酯N-乙烯基吡咯烷聚多巴胺
外文關鍵詞: Poly Lactic Acid, Ozone Treatment, Poly Ethylene Glycol Methacrylate, N-Vinyl Pyrrolidine, Poly Dopamine
相關次數: 點閱:291下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報


摘要 ........................................................................................................................................ i Abstract .................................................................................................................................. ii Acknowledgements .............................................................................................................. iv Table of Contents .................................................................................................................. v Table of Figures ................................................................................................................. viii Table of Tables ...................................................................................................................... x Chapter 1. Aim of The Work ................................................................................................. 1 1.1 Problem Statement ....................................................................................................... 1 1.2 Objectives .................................................................................................................... 2 1.3 Structure of Thesis ....................................................................................................... 2 Chapter 2. Literature Review................................................................................................. 3 2.1 Peripheral Nerve Injuries ............................................................................................. 3 2.2 Attempts and Current Gold Standard for Repairing Peripheral Nerve Defects ........... 4 2.3 Peripheral Nerve Conduit ............................................................................................ 5 2.4 Materials for Nerve Conduit ........................................................................................ 8 2.5 Commercially Available Peripheral Nerve Conduit .................................................. 14 2.5 PLA and PBAT Blend ............................................................................................... 16 2.6 Ozone Treatment ........................................................................................................ 17 vi 2.7 Hydrophilic Monomers .............................................................................................. 19 2.7.1 Poly Ethylene Glycol Methacrylate (PEGMA) ................................................... 19 2.7.2 Polyvynilpyrollidone (PVP) ................................................................................ 21 2.7.3 Polydopamine (PDA) .......................................................................................... 23 2.8 Surface Properties Effect on Cells Behavior ............................................................. 24 2.9 Protein and Biomaterial Interaction ........................................................................... 26 Chapter 3. Experimental Methodology ............................................................................... 28 3.1 Experimental Process ................................................................................................. 28 3.2 Materials .................................................................................................................... 29 3.3 Experimental Steps .................................................................................................... 29 3.4 Characterization ......................................................................................................... 30 3.4.1 Wettability ........................................................................................................... 30 3.4.2 Morphology Observation .................................................................................... 30 3.4.3 X-Ray Photoelectron Spectroscopy (XPS) ......................................................... 30 3.4.4. Biocompatibility ................................................................................................. 31 3.4.5 Protein Adsorption .............................................................................................. 31 Chapter 4. Experimental Result and Discussion ................................................................. 32 4.1 Morphology Observation and Elemental Composition Measurement ...................... 32 4.1.1 Morphology Observation .................................................................................... 32 4.1.2 Elemental Composition Measurement ................................................................ 34 4.2 X-Ray Photoelectron Spectroscopy ........................................................................... 35 vii 4.3 Contact Angle ............................................................................................................ 40 4.4 Protein Adsorption ..................................................................................................... 41 4.5 Cell Viability .............................................................................................................. 43 Chapter 5. Conclusion ......................................................................................................... 45 Chapter 6. Future Works ..................................................................................................... 47 Literatures ............................................................................................................................ 48

[1] Muheremu, A., & Ao, Q. (2015). Past, Present, and Future of Nerve Conduits in the Treatment of Peripheral Nerve Injury. BioMed Research International, 2015, 1-6.
[2] Bähr, M., & Bonhoeffer, F. (1994). Perspectives on axonal regeneration in the mammalian CNS. Trends in Neurosciences, 17(11), 473-479.
[3] Grinsell, D., & Keating, C. P. (2014). Peripheral Nerve Reconstruction after Injury: A Review of Clinical and Experimental Therapies. BioMed Research International, 2014, 1-13.
[4] Hasirci, V., Arslantunali, D., Dursun, T., Yucel, D., & Hasirci, N. (2014). Peripheral nerve conduits: Technology update. Medical Devices: Evidence and Research, 405.
[5] Kehoe, S., Zhang, X., & Boyd, D. (2012). FDA approved guidance conduits and wraps for peripheral nerve injury: A review of materials and efficacy. Injury, 43(5), 553-572.
[6] Angius, D., Wang, H., Spinner, R. J., Gutierrez-Cotto, Y., Yaszemski, M. J., & Windebank, A. J. (2012). A systematic review of animal models used to study nerve regeneration in tissue-engineered scaffolds. Biomaterials, 33(32), 8034-8039.
[7] Nguyen, D. Y., Tran, R. T., Costanzo, F., & Yang, J. (2015). Tissue-Engineered Peripheral Nerve Guide Fabrication Techniques. Nerves and Nerve Injuries, 971-992.
[8] Williams, D. F. (2008). On the mechanisms of biocompatibility. Biomaterials, 29(20), 2941-2953.
[9] Borschel, G. H., Kia, K. F., Kuzon, W. M., & Dennis, R. G. (2003). Mechanical properties of acellular peripheral nerve. Journal of Surgical Research, 114(2), 133-139.
[10] Meek, M. F., Jansen, K., Steendam, R., Oeveren, W. V., Wachem, P. B., & Luyn, M. J. (2003). In vitro degradation and biocompatibility of poly(DL-lactide-?-caprolactone) nerve guides. Journal of Biomedical Materials Research, 68A(1), 43-51.
[11] Dunnen, W. F., Meek, M. F., Grijpma, D. W., Robinson, P. H., & Schakenraad, J. M. (2000). In vivo andin vitro degradation of poly[50/50 (85/15L/D)LA/?-CL], and the implications for the use in nerve reconstruction. Journal of Biomedical Materials Research, 51(4), 575-585.
[12] Dunnen, W. F., Lei, B. V., Robinson, P. H., Holwerda, A., Pennings, A. J., & Schakenraad, J. M. (1995). Biological performance of a degradable poly(lactic acid-ε-caprolactone) nerve guide: Influence of tube dimensions. Journal of Biomedical Materials Research, 29(6), 757-766.
[13] Hoffman-Kim, D., Mitchel, J. A., & Bellamkonda, R. V. (2010). Topography, Cell Response, and Nerve Regeneration. Annual Review of Biomedical Engineering, 12(1), 203-231.
[14] Chien, H., Kuo, W., Wang, M., Tsai, S., & Tsai, W. (2012). Tunable Micropatterned Substrates Based on Poly(dopamine) Deposition via Microcontact Printing. Langmuir, 28(13), 5775-5782.
[15] Mitchell, S., Poulsson, A., Davidson, M., Emmison, N., Shard, A., & Bradley, R. (2004). Cellular attachment and spatial control of cells using micro-patterned ultra-violet/Ozone treatment in serum enriched media. Biomaterials, 25(18), 4079-4086.
[16] Hsu, S., & Ni, H. (2009). Fabrication of the Microgrooved/Microporous Polylactide Substrates as Peripheral Nerve Conduits and In Vivo Evaluation. Tissue Engineering Part A, 15(6), 1381-1390.
[17] Bozkurt, A., Deumens, R., Beckmann, C., Damink, L. O., Schügner, F., Heschel, I., Pallua, N. (2009). In vitro cell alignment obtained with a Schwann cell enriched microstructured nerve guide with longitudinal guidance channels. Biomaterials, 30(2), 169-179.
[18] Lesko, L. J., Zineh, I., & Huang, S. (2010). What Is Clinical Utility and Why Should We Care? Clinical Pharmacology & Therapeutics, 88(6), 729-733.
[19] Henstock, J., Canham, L., & Anderson, S. (2015). Silicon: The evolution of its use in biomaterials. Acta Biomaterialia, 11, 17-26.
[20] Lundborg, G., Dahlin, L., Dohi, D., Kanje, M., & Terada, N. (1997). A New Type of “Bioartificial” Nerve Graft for Bridging xtended efects in Nerves. Journal of Hand Surgery, 22(3), 299-303.
[21] Lundborg, G., Dahlin, L. B., Danielsen, N. P., Hansson, H. A., & Larsson, K. (1981). Reorganization and orientation of regenerating nerve fibres, perineurium, and epineurium in preformed mesothelial tubes - an experimental study on the sciatic nerve of rats. Journal of Neuroscience Research, 6(3), 265-281.
[22] Mondal, D., Griffith, M., & Venkatraman, S. S. (2016). Polycaprolactone-based biomaterials for tissue engineering and drug delivery: Current scenario and challenges. International Journal of Polymeric Materials and Polymeric Biomaterials, 65(5), 255-265.
[23] Casalini, T., & Perale, G. (2012). Types of bioresorbable polymers for medical applications. In M. Jenkins & A. Stamboulis (Eds.), Durability and reliability of medical polymers (pp. 3-29). Cambridge, UK: Woodhead Publishing Limited.
[24] Reid, A. J., Luca, A. C., Faroni, A., Downes, S., Sun, M., Terenghi, G., & Kingham, P. J. (2013). Long term peripheral nerve regeneration using a novel PCL nerve conduit. Neuroscience Letters, 544, 125-130.
[25] Muthukumar, T., Sreekumar, G., Sastry, T., & Chamundeeswari, M. (2018). Collagen as a Potential Biomaterial in Biomedical Applications. Reviews On Advanced Materials Science, 53(1), 29-39.
[26] Li, S., Archibald, S. J., Krarup, C., & Madison, R. D. (1992). Peripheral nerve repair with collagen conduits. Clinical Materials, 9(3-4), 195-200.
[27] Xiao, L., Wang, B., Yang, G., & Gauthier, M. (2012). Poly(Lactic Acid)-Based Biomaterials: Synthesis, Modification and Applications. Biomedical Science, Engineering and Technology.
[28] Ratner, B. D., Hoffman, A. S., Schoen, F. J., & Lemons, J. E. (2013). Biomaterials Science: An Introduction to Materials in Medicine (3rd ed.). Kidlington, Oxford: Academic/Elsevier.
[29] Lopes, M. S., Jardini, A., & Filho, R. M. (2012). Poly (Lactic Acid) Production for Tissue Engineering Applications. Procedia Engineering, 42, 1402-1413.
[30] Scaffaro, R., Maio, A., Sutera, F., Gulino, E., & Morreale, M. (2019). Degradation and Recycling of Films Based on Biodegradable Polymers: A Short Review. Polymers, 11(4), 651.
[31] Matsumine, H., Sasaki, R., Yamato, M., Okano, T., & Sakurai, H. (2012). A polylactic acid non-woven nerve conduit for facial nerve regeneration in rats. Journal of Tissue Engineering and Regenerative Medicine, 8(6), 454-462.
[32] Yang, F., Murugan, R., Wang, S., & Ramakrishna, S. (2005). Electrospinning of nano/micro scale poly(l-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials, 26(15), 2603-2610.
[33] Houshyar, S., Bhattacharyya, A., & Shanks, R. (2019). Peripheral Nerve Conduit: Materials and Structures. ACS Chemical Neuroscience, 10(8), 3349-3365.
[34] Yang, F., & Qiu, Z. (2010). Preparation, crystallization, and properties of biodegradable poly(butylene adipate-co-terephthalate)/organomodified montmorillonite nanocomposites. Journal of Applied Polymer Science, 119(3), 1426-1434.
[35] Nobrega, M. M., Olivato, J. B., Müller, C. M., & Yamashita, F. (2012). Biodegradable starch-based films containing saturated fatty acids: Thermal, infrared and raman spectroscopic characterization. Polímeros, 22(5), 475-480.
[36] Gigante, V., Canesi, I., Cinelli, P., Coltelli, M. B., & Lazzeri, A. (2019). Rubber Toughening of Polylactic Acid (PLA) with Poly(butylene adipate-co-terephthalate) (PBAT): Mechanical Properties, Fracture Mechanics and Analysis of Ductile-to-Brittle Behavior while Varying Temperature and Test Speed. European Polymer Journal, 115, 125-137.
[37] Farsetti, S., Cioni, B., & Lazzeri, A. (2011). Physico-Mechanical Properties of Biodegradable Rubber Toughened Polymers. Macromolecular Symposia, 301(1), 82-89.
[38] Zhao, P., Liu, W., Wu, Q., & Ren, J. (2010). Preparation, Mechanical, and Thermal Properties of Biodegradable Polyesters/Poly(Lactic Acid) Blends. Journal of Nanomaterials, 2010, 1-8.
[39] Kang, Y., Chen, P., Shi, X., Zhang, G., & Wang, C. (2018). Preparation of open-porous stereocomplex PLA/PBAT scaffolds and correlation between their morphology, mechanical behavior, and cell compatibility. RSC Advances, 8(23), 12933-12943.
[40] Rabek, J. F., Lucki, J., Rånby, B., Watanabe, Y., & Qu, B. J. (1988). Photoozonization of Polypropylene. ACS Symposium Series Chemical Reactions on Polymers, 187-200.
[41] Lin, T., Pfeiffer, T. T., & Lillehoj, P. B. (2017). Stability of UV/ozone-treated thermoplastics under different storage conditions for microfluidic analytical devices. RSC Adv., 7(59), 37374-37379.
[42] Macmanus, L. F., Walzak, M. J., & Mcintyre, N. S. (1999). Study of ultraviolet light and ozone surface modification of polypropylene. Journal of Polymer Science Part A: Polymer Chemistry, 37(14), 2489-2501.
[43] Liu, S., Kim, J., & Kim, S. (2008). Effect of Polymer Surface Modification on Polymer–Protein Interaction via Hydrophilic Polymer Grafting. Journal of Food Science, 73(3).
[44] Ko, Y. G., Kim, Y. H., Park, K. D., Lee, H. J., Lee, W. K., Park, H. D., . . . Ahn, D. J. (2001). Immobilization of poly(ethylene glycol) or its sulfonate onto polymer surfaces by ozone oxidation. Biomaterials, 22(15), 2115-2123.
[45] Hutanu, D. (2014). Recent Applications of Polyethylene Glycols (PEGs) and PEG Derivatives. Modern Chemistry & Applications, 02(02).
[46] Herzberger, J., Niederer, K., Pohlit, H., Seiwert, J., Worm, M., Wurm, F. R., & Frey, H. (2015). Polymerization of Ethylene Oxide, Propylene Oxide, and Other Alkylene Oxides: Synthesis, Novel Polymer Architectures, and Bioconjugation. Chemical Reviews, 116(4), 2170-2243.
[47] Liu, G., Li, Y., Yang, L., Wei, Y., Wang, X., Wang, Z., & Tao, L. (2017). Cytotoxicity study of polyethylene glycol derivatives. RSC Advances, 7(30), 18252-18259.
[48] Reddy, M. V., Byeon, K. R., Park, S. H., & Kim, D. W. (2017). Polyethylene glycol methacrylate-grafted dicationic imidazolium-based ionic liquid: Heterogeneous catalyst for the synthesis of aryl-benzo[4,5]imidazo[1,2- a ]pyrimidine amines under solvent-free conditions. Tetrahedron, 73(35), 5289-5296.
[49] Thi, T. T., Pilkington, E. H., Nguyen, D. H., Lee, J. S., Park, K. D., & Truong, N. P. (2020). The Importance of Poly(ethylene glycol) Alternatives for Overcoming PEG Immunogenicity in Drug Delivery and Bioconjugation. Polymers, 12(2), 298.
[50] Yeh, C., Venault, A., & Chang, Y. (2016). Structural effect of poly(ethylene glycol) segmental length on biofouling and hemocompatibility. Polymer Journal, 48(4), 551-558.
[51] Franco, P., & Marco, I. D. (2020). The Use of Poly(N-vinyl pyrrolidone) in the Delivery of Drugs: A Review. Polymers, 12(5), 1114.
[52] Teodorescu, M., & Bercea, M. (2015). Poly(vinylpyrrolidone) – A Versatile Polymer for Biomedical and Beyond Medical Applications. Polymer-Plastics Technology and Engineering, 54(9), 923-943.
[53] Liu, X., Xu, Y., Wu, Z., & Chen, H. (2012). Poly(N-vinylpyrrolidone)-Modified Surfaces for Biomedical Applications. Macromolecular Bioscience, 13(2), 147-154.
[54] Lee, H., Dellatore, S. M., Miller, W. M., & Messersmith, P. B. (2007). Mussel-Inspired Surface Chemistry for Multifunctional Coatings. Science, 318(5849), 426-430.
[55] Liebscher, J. (2019). Chemistry of Polydopamine - Scope, Variation, and Limitation. European Journal of Organic Chemistry, 2019(31-32), 4976-4994.
[56] Li, Q., Sun, L., Zhang, L., Xu, Z., Kang, Y., & Xue, P. (2017). Polydopamine-collagen complex to enhance the biocompatibility of polydimethylsiloxane substrates
for sustaining long-term culture of L929 fibroblasts and tendon stem cells. Journal of Biomedical Materials Research Part A, 106(2), 408-418.
[57] Ferrari, M., Cirisano, F., & Morán, M. C. (2019). Mammalian Cell Behavior on Hydrophobic Substrates: Influence of Surface Properties. Colloids and Interfaces, 3(2), 48.
[58] Kang, S. M., & Choi, I. S. (2013). Control of Cell Adhesion on a Superhydrophobic Surface by Polydopamine Coating. Bulletin of the Korean Chemical Society, 34(8), 2525-2527.
[59] Lourenço, B. N., Marchioli, G., Song, W., Reis, R. L., Blitterswijk, C. A., Karperien, M., Mano, J. F. (2012). Wettability Influences Cell Behavior on Superhydrophobic Surfaces with Different Topographies. Biointerphases, 7(1), 46.
[60] Schneider, G. B., English, A., Abraham, M., Zaharias, R., Stanford, C., & Keller, J. (2004). The effect of hydrogel charge density on cell attachment. Biomaterials, 25(15), 3023-3028.
[61] Dadsetan, M., Pumberger, M., Casper, M. E., Shogren, K., Giuliani, M., Ruesink, T., Yaszemski, M. J. (2011). The effects of fixed electrical charge on chondrocyte behavior. Acta Biomaterialia, 7(5), 2080-2090.
[62] Barbosa, M. A., & Martins, M. C. (Eds.). (2018). Peptides and proteins as biomaterials for tissue regeneration and repair. Duxford, United Kingdom: Elsevier.
[63] Fu, Y., Wu, G., Bian, X., Zeng, J., & Weng, Y. (2020). Biodegradation Behavior of Poly(Butylene Adipate-Co-Terephthalate) (PBAT), Poly(Lactic Acid) (PLA), and Their Blend in Freshwater with Sediment. Molecules, 25(17), 3946.
[64] Chen, J., & Su, C. (2011). Surface modification of electrospun PLLA nanofibers by plasma treatment and cationized gelatin immobilization for cartilage tissue engineering. Acta Biomaterialia, 7(1), 234-243.
[65] Shard, A. G., Davies, M. C., Tendler, S. J., Nicholas, C. V., Purbrick, M. D., & Watts, J. F. (1995). Surface Characterization of Methyl Methacrylate-Polyethylene Glycol Methacrylate Copolymers by Secondary Ion Mass Spectrometry and X-ray Photoelectron Spectroscopy. Macromolecules, 28(23), 7855-7859.
[66] Huang, C. L., Lin, Y. Y., & Liao, J. D. (2006). Immobilization of Chitosan on the Plasma-Activated Poly-L-Lactic Acid Film Surface Using Evaporated Acrylic Acid as the Intermediate. Advances in Science and Technology, 49, 197-202.
[67] Rella, S., Mazzotta, E., Caroli, A., Luca, M. D., Bucci, C., & Malitesta, C. (2018). Investigation of polydopamine coatings by X-ray Photoelectron Spectroscopy as an effective tool for improving biomolecule conjugation. Applied Surface Science, 447, 31-39.
[68] Murakami, T. N., Fukushima, Y., Hirano, Y., Tokuoka, Y., Takahashi, M., & Kawashima, N. (2005). Modification of PS films by combined treatment of ozone aeration and UV irradiation in aqueous ammonia solution for the introduction of amine and amide groups on their surface. Applied Surface Science, 249(1-4), 425-432.
[69] Yang, L. (2015). Nanotechnology-enhanced orthopedic materials: Fabrications, applications and future trends. Cambridge, UK: Woodhead Publishing is an imprint of Elsevier.
[70] Sakurai, Y., Kawashima, N., & Tokuoka, Y. (2017). Chemical properties and protein adsorptions on ozone/UV-treated poly(ethylene terephthalate) film surfaces. Colloid and Polymer Science, 295(3), 413-420.
[71] Wang, Z., Yang, H., He, F., Peng, S., Li, Y., Shao, L., & Darling, S. B. (2019). Mussel-Inspired Surface Engineering for Water-Remediation Materials. Matter, 1(1), 115-155.
[72] Olson, B. J., & Markwell, J. (2007). Assays for Determination of Protein Concentration. Current Protocols in Protein Science, 48(1).
[73] Ding, Y., Yang, Z., Bi, C. W., Yang, M., Zhang, J., Xu, S. L., . . . Leng, Y. (2014). Modulation of protein adsorption, vascular cell selectivity and platelet adhesion by mussel-inspired surface functionalization. J. Mater. Chem. B, 2(24), 3819-3829.
[74] Dee, K. C., Bizios, R., & Puleo, D. A. (2003). Protein-Surface Interactions. An Introduction To Tissue-Biomaterial Interactions, 37-52.
[75] Arima, Y., & Iwata, H. (2007). Effects of surface functional groups on protein adsorption and subsequent cell adhesion using self-assembled monolayers. Journal of Materials Chemistry, 17(38), 4079.
[76] Ezra, M., Bushman, J., Shreiber, D., Schachner, M., & Kohn, J. (2013). Enhanced Femoral Nerve Regeneration After Tubulization with a Tyrosine-Derived
Polycarbonate Terpolymer: Effects of Protein Adsorption and Independence of Conduit Porosity. Tissue Engineering Part A, 131112094536009.

無法下載圖示 全文公開日期 2026/01/29 (校內網路)
全文公開日期 2026/01/29 (校外網路)
全文公開日期 2026/01/29 (國家圖書館:臺灣博碩士論文系統)
QR CODE