簡易檢索 / 詳目顯示

研究生: 莊華晟
Chuang-Hua Cheng
論文名稱: 應用偏移加工法多層切削單晶矽梯形凹槽之切削力及溫度分佈與熱傳模擬分析研究
A study of cutting force and temperature distribution for multilayered cutting of trapezium groove on single-crystal silicon by offset cutting method and simulation analysis of heat conduction
指導教授: 林榮慶
Zone-Ching Lin
口試委員: 王國雄
none
許覺良
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 198
中文關鍵詞: 分子靜力學奈米級切削單晶矽偏移加工溫度
外文關鍵詞: temperature.
相關次數: 點閱:186下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文應用分子靜力學三維準穩態奈米切削模式,進行模擬AFM探針切削單晶矽奈米流道梯形凹槽的偏移循環加工,除了可計算切削力、等效應力與等效應變外,亦可計算被切削單晶矽工件所提升之溫度;進而可進行被切削單晶矽工件的溫度分佈分析。此外本文亦進一步將前述所得被切削單晶矽工件各原子之總提升溫度帶入有限差分熱傳方程式,並將計算出來的空氣及水的熱對流係數值也帶入有限差分熱傳方程式,計算出每一步階奈米級梯形凹槽偏移加工切削中被切削的單晶矽工件之溫度場變化。本文以切削兩道次偏移加工法加工多切削層單晶矽基板奈米流道梯形凹槽,先以固定的切削深度進行單晶矽梯形凹槽之加工,切削完第一切削層之第一切削道次後再以固定偏移量往右偏移切削第二切削道次。本文分為兩種切削加工模式來分析,第一種模式為以任意設定的切削深度來切削第二切削層之第一切削道次,之後再以相同切削深度來偏移切削第二切削道次,分析其下壓力與切削力的變化。第二種模式為固定第一切削層之第一切削道次之下壓力,再應用比下壓能公式與CAD軟體模擬出的切削移除體積計算出所需要的切削深度,再向右偏移完成切削第二切削道次,並以相同模式加工第二切削層及第三切削層的兩個第二切削道次,分析其切削力與下壓力的變化。最後再以比下壓能之理論公式計算所得之切削力及下壓力與前面分子靜力學三維準穩態奈米切削模式模擬所得之切削力與下壓力相比較,驗證模擬結果為合理的。進一步用模擬所得之各原子位移量及切削力和下壓力之值,計算出被切削單晶矽的等效應變及等效應力。本文假設切削模式,被切削單晶矽工件溫度的提升是由塑性變形熱與摩擦熱兩種熱源產生。本文塑性變形熱可由被切削工件單晶矽之等效應力與等效應變之乘積計算出。本文並計算因摩擦熱源產生的溫度提升。本文再將兩種熱源所產生之溫度提升加總計算後,得到被切削單晶矽工件各原子提升之總溫度,再進行溫度場分析。此外本文亦進一步將前述所得被切削單晶矽工件各原子提升之總溫度帶入有限差分熱傳方程式。本文提出應用上表面為發熱的平板熱對流公式與計算步驟,計算出在25℃時的空氣與水的熱對流係數然後將所得之熱對流係數帶入有限差分熱傳方程式,即可計算出每一步階奈米級梯形凹槽偏移加工切削中,被切削的單晶矽工件之切削表面與還沒被切削到的單晶矽表面各原子之溫度場變化。最後再進行分析被切削工件表面受到室溫之水的熱對流及室溫之空氣的熱對流對被切削單晶矽之溫度分佈影響分析。


    The paper applies three-dimensional quasi-steady nanocutting model of molecular statics to conduct simulation of offset cycle cutting in cutting of trapezium groove on single-crystal silicon nanochannel by AFM probe. The paper can calculate not only the cutting force, equivalent stress and equivalent strain, but also the temperature rise of the single-crystal silicon workpiece being cut. Furthermore, the temperature distribution of the single-crystal silicon workpiece being cut can be analyzed. Besides, the abovementioned total temperature rise of all atoms of the single-crystal silicon workpiece being cut can be substituted in finite-difference heat conduction equation. The calculated numerical values of thermal convection coefficients of air and water are also substituted in finite-difference heat conduction equation. The paper calculates the change in temperature field of the single-crystal silicon workpiece being cut during each step of offset cutting and cutting of nanoscale trapezium groove. The study employs two-path offset cutting method to cut multilayered trapezium groove on nanochannel of single-crystal silicon substrate. First of all, a fixed cutting depth is cut for cutting of single-crystal silicon trapezium groove. After completion of the first cutting path on the first cutting layer, rightward offset cutting for the second cutting path at a fixed offset amount is made. The paper intends to analyze two cutting models for two-path offset cutting method. For the first model, a randomly set cutting depth is cut for the first cutting path on the second cutting layer. Then the same cutting depth is cut for offset cutting of the second cutting path, and the change in down force and cutting force is analyzed. As to the second model, a fixed down force is applied for the first cutting path on the first cutting layer. Specific down force energy (SDFE) equation and CAD software are used to simulate the removed volume during cutting, and calculate the required cutting depth. After rightward offset is completed, cutting of the second cutting path is completed. The same model is used to cut the second cutting paths on the second cutting layer and the third cutting layer, and the change in cutting force and down force is analyzed. Finally, the cutting force and down force obtained from calculation of the SDFE theoretical equation is compared with the cutting force and down force obtained from simulation of the abovementioned three-dimensional quasi-steady nanocutting model of molecular statics, proving the rationality of the simulation results. Furthermore, using the displaced amount, cutting force and down force of each atom acquired from simulation, the equivalent strain and equivalent stress of single-crystal silicon being cut are calculated. The paper supposes that for the cutting model, the temperature rise of the single-crystal silicon workpiece being cut is caused by two heat sources: plastic deformation heat and friction heat. In the paper the plastic deformation heat can be calculated by multiplying equivalent stress by equivalent strain of the single-crystal silicon workpiece being cut. The paper also calculates the temperature rise caused by friction heat. The paper adds up the temperature rise caused by the two heat sources, and achieves the total temperature rise of all atoms of the single-crystal silicon workpiece being cut, for analysis of temperature field. Besides, the abovementioned total temperature rise of all atoms of the single-crystal silicon workpiece being cut is further substituted in the finite-difference heat conduction equation. The paper proposes applying the thermal convection equation and calculation procedures of the upper surface heating plate, and calculates the thermal convection coefficients of air and water under 25oC. The obtained thermal convection coefficients are substituted in the finite-difference heat conduction equation. Then the paper can calculate the change of temperature field of each atom on the surface of the single-crystal silicon workpiece being cut and on the surface of the single-crystal silicon workpiece not being cut during each step of offset cutting of nanoscale trapezium groove. Finally, the paper analyzes how the thermal convection of water under room temperature affects the surface of the workpiece being cut, and how the thermal convection of air under room temperature affects the temperature distribution of the single-crystal silicon being cut.

    目錄 摘要……….I Abstract……….III 誌謝………VI 目錄………VII 圖目錄……..XI 表目錄…………XXIV 第一章緒論1 1.1 前言1 1.2 研究動機及目的2 1.3 文獻回顧5 1.3.1 奈米級切削加工實驗之相關文獻5 1.3.2 分子力學之文獻7 1.3.3 奈米級模擬切削及切削工件溫度場的文獻10 1.4 本文架構14 第二章不同軸向比下壓能之理論模式之切削力與下壓力預測和固定深度及改變下壓力偏移加工梯形凹槽17 2.1建立不同軸向比下壓能理論模式及計算比下壓能方法17 2.2.比下壓能理論模式計算切削力與下壓力20 2.3偏移加工法加工梯形凹槽22 第三章分子靜力學三維準穩態奈米級切削模式及溫度提升計算27 3.1 分子靜力學之基本原理27 3.1.1 分子作用力及勢能函數28 3.1.2 截斷半徑法30 3.1.3 物理參數32 3.1.4 虎克 吉夫斯(Hooke-Jeeves)搜尋法32 3.1.5 奈米級切削力之計算34 3.2 等效應變及等效應力計算方法38 3.2.1 等效應變之計算38 3.2.2 等效應力之計算44 3.3 被切削工件之提升溫度計算45 3.3.1 塑性變形熱之提升溫度計算方法46 3.3.2 摩擦熱之提升溫度計算方法46 3.3.3 有限差分熱傳方程式48 3.3.4 內部控制體積49 3.3.5 邊界控制體積50 3.3.6 熱傳條件設定53 3.3.7熱對流材料的假設與計算54 第四章模擬模型的建構59 4.1 等應變四面體(constant strain tetrahedron,CST)元素59 4.2 奈米切削模擬條件的設定73 4.3 切割單晶矽之原子排列76 4.3.1 原子編號的原理76 4.3.2 原子編號與排列77 第五章結果與討論79 5.1 單晶矽基板已固定加工深度方式偏移加工每一切削層的奈米流道梯形凹槽之分子靜力學三維準穩態奈米級切削模擬模式與比下壓能法計算切削力與下壓力82 5.1.1 單晶矽基板以固定加工深度方式偏移加工第一切削層的奈米流道梯形凹槽之切削力與下壓力82 5.1.2 以固定任意深度加工第二切削層之偏移加工奈米流道梯形凹槽各道次之切削力與下壓力85 5.1.3 以固定第一切削層第一道次下壓力來計算第二切削層固定加工深度方式偏移加工奈米流道梯形凹槽各道次之切削力與下壓力88 5.1.4 以固定第一切削層第一道次下壓力來計算第三切削層固定加工深度方式偏移加工奈米流道梯形凹槽各道次之切削力與下壓力91 5.2 分子靜力學三維準穩態奈米級切削模擬模式模擬切削單晶矽不同切削層各道次之等效應變與等效應力分析94 5.2.1 奈米級切削單晶矽第一切削層偏移切削之等效應變與等效應力分析94 5.2.2 奈米級切削單晶矽以任意增加第二切削層固定加工深度方式偏移加工奈米流道梯形凹槽各道次之等效應變與等效應力分析98 5.2.3 奈米級切削單晶矽以固定第一切削層第一道次下壓力來計算第二切削層固定加工深度方式偏移加工奈米流道梯形凹槽各道次之等效應變與等效應力分析102 5.2.4 奈米級切削單晶矽以固定第一切削層第一道次下壓力來計算第三切削層固定加工深度方式偏移加工奈米流道梯形凹槽各道次之等效應變與等效應力分析106 5.3分子靜力學三維準穩態奈米級切削模擬模式模擬切削單晶矽不同切削層各道次之切削溫度計算與空氣及水熱傳結果之探討110 5.3.1 奈米級切削單晶矽第一切削層偏移切削之不同熱源提升的溫度及最後溫度分佈分析與有限差分法使用空氣及水熱傳後之溫度結果111 5.3.2 奈米級切削單晶矽以任意第二切削層加工深度偏移切削之不同熱源提升的溫度及最後溫度分佈分析與有限差分法使用空氣及水熱傳後之溫度結果130 5.3.3 奈米級切削單晶矽以固定第一切削層第一道次下壓力來計算第二切削層固定加工深度方式偏移加工奈米流道梯形凹槽各道次之不同熱源提升的溫度及最後溫度分佈分析與有限差分法使用空氣及水熱傳後之溫度結果149 5.3.4 奈米級切削單晶矽以固定第一切削層第一道次下壓力來計算第三切削層固定加工深度方式偏移加工奈米流道梯形凹槽各道次之不同熱源提升的溫度及最後溫度分佈分析與有限差分法使用空氣及水熱傳後之溫度結果168 第六章結論190 6.1 結論190 參考文獻……….192

    參考文獻
    [1].Lin, Z. C. and Hsu, Y. C., “Analysis on Simulation of Quasi-steady Molecular Statics Nanocutting Model and Calculation of Temperature Rise During Orthogonal Cutting of Single-crystal Copper”, CMC: Computers, Materials, & Continua, Vol.27, No.2, pp. 143-178 (2012).
    [2].Cheng, M. S., Ho, J. S., Tan, C. H., Wong J. P., Ng L. C., and Toh, C. S., “Development of an electrochemical membrane-based nanobiosensor for ultrasensitive detection of dengue virus”, Analytica Chimica Acta, Vol.725, pp.74-80 (2012).
    [3].Wang, Z., Wang, D., Jiao, N., Tung, S., and Dong, Z., “A Nanochannel System Fabricated by MEMS Microfabrication and Atomic Force Microscopy”, Nano/Micro Engineered and Molecular Systems, pp.372-376 (2011).
    [4].Salieb-Beugelaar, G. B., Teapal, J., van Nieuwkasteele, J., Wijnperle, D., Tegenfeldt, J. O., Lisdat, F., van den Berg, A., Eijkel, and J. C. T., “Field-Dependent DNA Mobility in 20nm High Nanoslits”, Nano Letters, Vol.8, No.7, pp.1785-1790 (2008).
    [5].Fologea, D., Gershow, M., Ledden, B., McNabb, D. S., Golovchenko, J. A., and Li, J., “Detecting Single Stranded DNA with a Solid State Nanopore”, Nano Letters, Vol.5, No.10, pp.1905-1909 (2005).
    [6].Maleki, T., Mohammadi, S., and Ziaie, B., “A nanofluidic channel with embedded transverse nanoelectrodes”, Nanotechnology, Vol.20, No.10 (2009).
    [7].Lübben, J. F. and D. Johannsmann, “Nanoscale High-frequency Contact Mechanics Using an AFM Tip and a Quartz Crystal Resonator”, Langmuir,Vol.20, No.9, pp. 3698-3703 (2004).
    [8].Fang, T. H., Weng, C. I., and Chang, J. G., “Machining Characterization of Nano-lithography Process by Using Atomic Force Microscopy”, Nanotechnology, Vol.11, No.5, pp.181-187 (2000).
    [9].Z.Q. Wang, Jiaoa, N. D., Tungc, S., and Donga, Z. L., “Atomic force microscopy-based repeated machining theory for nanochannels on silicon oxide surfaces”, Applied Surface Science, Vol.257, pp.3627-3631 (2011).
    [10].Tseng, A.A., “A Comparison Study of Scratch and Wear Properties Using Atomic Force Microscopy”, Applied Surface Science, Vol. 256, No.13, pp. 4246- 4252 (2010).
    [11].林建廷,「應用比下壓能及改變下壓力之單晶矽奈米流道凹槽加工模擬模式建立與實驗研究」,碩士論文,國立台灣科技大學大學機械工程研究所,民國102年
    [12].Irving, J. H. and Kirkwood, J. G., “The statistical mechanical theory of transport properties. IV. The equations of hydrodynamics”, J. Chem. Phys., Vol.19, Issue 9, pp. 817-829 (1950).
    [13].Kwon, Y. W. and Jung, S. H., “Atomic model and coupling with continuum model for static equilibrium problems,” Computers and Structures, Computational Structures Technology, Vol.82, Issues 23-26, pp. 1993-2000 (2004).
    [14].IGOR Ye. Telitchev, and OLEG Vinogradov, “A method for quasi-static analysis of topologically variable lattice structures,” International Journal of Computational Methods, Vol.3, Issue 1, pp. 71-81 (2006).
    [15].Jeng, Y. R., and Tan, C. M., “Study of Nanoindentation Using FEM Atomic Model,” Journal of Tribology, Vol.126, Issue 4, pp. 767-774 (2004).
    [16].Hu, S. Y., Ludwig, M., Kizler, P., and Schmauder, S., “Atomistic simulations of deformation and fracture of α-Fe,” Modelling Simul. Mater. Sci. Eng., Vol.6, No.5, pp. 567–586 (1998).
    [17].Saraev, D., Kizler, P., and Schmauder, S., “The influence of Frenkel defects on the deformation and fracture of alpha-Fe single crystals,” Modelling Simul. Mater. Sci., Eng., Vol.7, No.6, pp.1013–1023 (1999).
    [18].陳雨樵,「以分子模擬方法研究奈米線之機械性質」,碩士論文,國立中正大學機械工程研究所,民國九十五年。
    [19].James, S. and Sundaram, M. M., “A molecular dynamics study of the effect of impact velocity, particle size and angle of impact of abrasive grain in the Vibration Assisted Nano Impact-machining by Loose Abrasives”, Wear,Vol.303, Issue 1-2, pp. 510-518 (2013).
    [20].Lin, Z. C. and Huang, wei-fu., “Simulation of two dimensional Nanoscale cutting copper by Quasi-steady molecular statics Method , Applied Method , Applied Mechanics and Materials, Vol.300-301, pp.265-268 (2013) (EI).
    [21].林榮慶,簡辰學, 林孟樺,「具空孔缺陷之單晶矽材料之三維分子靜力學奈米級正交切削研究」, SME,論文編號:B9,p.20 (2010).
    [22].Shimada, S., “Molecular Dynamics Analysis as Compared with Experimental Results of Micromachining”, CIRP Annals, Vol.41, Issue 1, pp.117-120 (1990).
    [23].Childs, T. H. C. and Maewaka, K., “Computer-aided Simulation and Experimental Studies of Chip Flow and Tool Wear in the Turning of Flow Alloy Steels by Cemented Carbide Tools” ,Wear, Vol.139, Issue2, pp. 235-250 (1990).
    [24].Belak, J. and Stowers, I. F., “A Molecular Dynamics Model of the Orthogonal Cutting Process”, Proc. Am. Soc., Precision Eng., pp.76-79 (1990).
    [25].Kim, J. D. and Moon, C. H., “A study on microcutting for the configuration of tools using molecular dynamics”, Journal of Materials Processing Technology, Vol.59, No.4, pp. 309-314 (1995).
    [26].Fang, F. Z., Wu, H., Zhou, W., and Hu, X. T., “A study on mechanism of nano-cutting single crystal silicon”, Journal of Materials Processing Technology, Vol.184, No.1-3, pp. 407-410 (2007).
    [27].Pei, Q. X., Lu, C., Fang, F. Z., and Wu, H., “Nanometric cutting of copper: A molecular dynamics study”, Computational Materials Science, Vol.37, No.4, pp.434-441 (2006).
    [28].Inamura, T. and Takezawa, N., “Cutting Experiments in a Computer Using Atomic Models of a Copper Crystal and a Diamond Tool”, Int. J. Japan Soc. Prec. Eng., Vol.25, No. 4, pp. 259-266 (1991).
    [29].Inamura, T. and Takezawa, N., “Atomic-Scale Cutting in a Computer Using Crystal Models of Copper and Diamond”, CIRP Annals, Vol.41, No. 1, pp. 121-124 (1992).
    [30].Inamura, T., Takezawa, N., and, Kumaki, Y., “Mechanics and energy dissipation in nanoscale cutting”, CIRP Annals, Vol.42, No.1, pp.79-82 (1993).
    [31].Cai, M. B., Li, X. P., and Rahman, M., “Study of the mechanism of nanoscale ductile mode cutting of silicon using molecular dynamics simulation”, International Journal of Machine Tool & Manufacture, Vol.47, Issue 1, pp.75–80 (2007).
    [32].Cai, M. B., Li, X. P., and Rahman, M., “Characteristics of dynamic hard particles in nanoscale ductile mode cutting of monocrystalline silicon with diamond tools in relation to tool groove wear”, Wear, Vol.263, Issue7-12, pp.1459-1466 (2007).
    [33].Cai, M. B., Li, X. P., and Rahman, M., “Study of the temperature and stress in nanoscale ductile mode cutting of silicon using molecular dynamics simulation”, Journal of Materials Processing Technology, Vol.192-193, No.1, pp. 607-612 (2007).
    [34].Tanaka, H. and Shimada, S., “Requirements for Ductile-mode Machining Based on Deformation Analysis of Mono-crystalline Silicon by Molecular Dynamics Simulation”, CIRP Annals, Vol.56, Issue 1, pp.53-56 (2007).
    [35].Tang, Q. H., “MD simulation of dislocation mobility during cutting with diamond tip on silicon”, Materials Science in Semiconductor Processing, Vol.10, Issue 6, pp.270-275 (2007).
    [36].Shimada, S., “Molecular dynamics analysis of nanometric cutting process”, CIRP Annals, Vol.29, No.4, pp.283-289 (1995).
    [37].Goel, S., Luo, X., Reuben, R. L., and Pen, H., “Influence of temperature and crystal orientation on tool wear during single point diamond turning of silicon”, Wear, Vol.284-285, No.25, pp.65-72 (2012).
    [38].Lin, Z. C. and Huang, J. C., “A nano-orthogonal Cutting Model Based on a Modified Molecular Dynamics Technique”, Nanotechnology, Vol.15, No.5, pp.510-519 (2004).
    [39].Rahman, A., “Correlations in motions of atoms in liquid argon”, Physical Review, Vol.136, No.2A, pp.405-411 (1964).
    [40].Lin, Z. C. and Hsu, Y. C., “Simalation Analysis and Experiment Study of Nanocutting with AFM Probe on the Surface of Sapphire Substrate by Using Three Dimensional Quasi-Steady Molecular statics Nanocutting Madel”, CMC: Computers, Materials, & Continua, Vol.25, No.1, pp.75-106 (2011).
    [41].Girifalco, L. A. and Weizer, V. G., “Application of the Morse Potential Function to Cubic Metals”, Physics review, Vol.114, pp. 687-690 (1959).
    [42].Lin, Z. C., Pan, W. C. and Lo, S. P., “A Study of Orthogonal Cutting with Tool Flank Wear and Sticking Behavior on the Chip-Tool Interface”, Journal of Materials Processing Technology, Vol.52, No.2-4, pp.524-538 (1995).
    [43].Huebner, K. H. and Thornton, E. A. The Finite Element Method for Engineers, John Wiley and Sons, New York, pp.284-295 (1995)
    [44].Rentsch, R. and Inasaki, I., “Effects of Fluids on the Surface Generation in Material Removal Processes-Molecular Dynamics Simulation”, CIRP Annals, Vol.55, Issue 1, pp. 601-604 (2006).
    [45].Reklaitis, G. V., Engineering Optimization: Methods and Application, Wiley; 2 Edition, USA (2006).
    [46].Aly, M. F., Ng, E., Veldhuis, S. C., and Elbestawi, M. A., “Prediction of Cutting Forces in the Micro-machining of Silicon Using a Hybrid Molecular Dynamic-finite Element Analysis Force Model”, International Journal of Machine Tools and Manufacture, Vol.46, Issue 14, pp.1727–1739 (2006).
    [47].Yunus A. Cengel and Afshin J. Ghajar., Heat and Mass Transfer: Fundamentals & Applications, 4e, The McGraw-Hill Companies, Inc. (2010).
    [48]. http://help.solidworks.com/2011/Chinese/SolidWorks/cworks/LegacyHelp/Simulation/AnalysisBackground/ThermalAnalysis/Convection_Topics/Convection_Heat_Coefficient.htm

    無法下載圖示 全文公開日期 2021/08/02 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE