簡易檢索 / 詳目顯示

研究生: 馮文銳
Fung Man Yui Thomas
論文名稱: 基於金屬有機網絡的超薄微孔膜應用於高鹽環境中的高效滲透能源轉換
An Ultrathin Microporous Metal-Organic-Network-Based Membrane for High-Performance Osmotic Energy Conversion in Hypersaline Environment
指導教授: 葉禮賢
Li-Hsien Yeh
口試委員: 郭紹偉
Shiao-Wei Kuo
吳嘉文
Chia-Wen (Kevin) Wu
邱昱誠
Yu-Cheng Chiu
葉禮賢
Li-Hsien Yeh
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 82
中文關鍵詞: 超薄離子選擇性膜微孔金屬有機網絡奈米流體滲透能源
外文關鍵詞: Ultrathin ion-selective membrane, Microporous metal-organic network, Nanofluidics, Osmotic power
相關次數: 點閱:200下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 滲透能是一種具有巨大潛力的新興可持續能源。透過精心設計的微孔離子選擇性膜,這種能源可以在鹽度梯度環境下的可控離子傳輸中被收集。然而,大多數常規的金屬有機框架膜由於其厚度通常在微米尺度,因此具有很高的膜阻抗。此外,典型的滲透能收集涉及海水河水對溶液,其濃度梯度為50倍,限制了功率輸出。另一方面,鹽湖水河水溶液的500倍濃度梯度能大幅增加離子通量和驅動力,從而增強發電能力。為了有效收集藍色能量,我們製備了一種由超薄微孔金屬有機網絡(mMON)膜和氧化鋁奈米通道膜(ANM)組成的異質膜,用於可持續滲透能轉換。有機單元與金屬連結劑之間的快速界面醇解反應形成了厚度小於100奈米的超薄選擇性層。實驗結果表明,製造的膜具有連續、無缺陷、非結晶和次奈米尺度結構。由於表面電荷性質和擴張空隙的次奈米尺度通道,該膜可用作滲透能收集的離子選擇性層。本文討論了mMON膜的厚度和鹽類類型等幾個關鍵因素對發電性能的影響。膜的低阻抗實現了超高電流密度,進而在由人造鹽湖水河水對的高鹽環境中實現了41.2W/m2的前所未有的功率密度,超越了所有最先進的微孔膜。本研究提供了一個具潛力的薄膜設計利用非結晶但超薄選擇性層的薄膜設計實現高性能滲透能發電。


    Osmotic energy is an emerging sustainable energy source with great potential. Using carefully designed microporous ion-selective membranes, such energy can be harvested from solution pairs of different salt concentrations by controlled ion transfer through a membrane. However, most conventional metal-organic framework membranes have high membrane resistance as their thickness are typically in micrometer-scale. Moreover, typical osmotic energy harvesting involves seawater/river water pair, which translates to a 50-fold gradient, limiting the power output. On the other hand, a 500-fold gradient of salt-lake water/river water pair could massively increase both ion flux and its driving force thus enhancing power generation. To effectively harvest blue energy, we report a heterogeneous membrane composed of an ultrathin microporous metal-organic network (mMON) membrane supported by an alumina nanochannel membrane (ANM) for sustainable osmotic energy conversion. Fast interfacial alcoholysis reaction between the organic units and metal linkers enabled the formation of an ultrathin selective layer with a thickness of less than 100 nm. Experimental results demonstrate that the fabricated membranes possess a continuous, defect-free, amorphous and subnanoscale structure. The membrane could be used as an ion-selective layer for osmotic power harvesting owing to the surface charge properties and subnanoscale channels with expanded cavity. The effects of several key factors, such as the membrane thickness of mMON and salt types, on the power generation performance are discussed. Due to the low transmembrane resistance of the fabricated membrane, an ultrahigh current density was achieved, which subsequently led to an unprecedented power density of 41.2 W/m2 in hypersaline environment consisting of an artificial salt-lake water/river water pair, surpassing all the state-of-the-art microporous membranes. This work provides insights into the utilization of amorphous yet ultrathin selective layers for achieving high-performance osmotic power generation.

    Table of Contents Abstract ........................................ 5 Table of Content ............................ 8 Chapter 1 Introduction ................. 15 1.1. Preface.......................... 15 1.2. Motivation .................... 16 1.3. Literature review .......... 17 1.4. Objectives .................... 25 Chapter 2 Principles and Mechanisms ................................. 26 2.1. Microporous Metal-organic network ................... 26 2.2. Electrical double layer .................... 26 2.3. Ion selectivity ............................... 29 2.4. Electrical conductance ........................... 29 2.5. Extracting osmotic energy ................................... 31 Chapter 3 Materials and Methods ........................... 35 3.1. Chemicals and equipment .................................... 35 3.1.1. Chemicals ..................... 35 3.1.2. Equipment .................... 36 3.1.3. Analytical instruments ....................... 37 3.2. Experimental section ..................... 39 3.2.1. Fabrication process of the mMon-based membrane ................ 39 3.2.1.1. Fabrication process of ANM .......................... 39 3.2.1.2. Fabrication process of CNT/ANM support and TTSBI-Ti layer ........... 41 3.2.2. Electrical measurements of the mMon-based membrane ........................ 43 Chapter 4 Results and Discussion ................................. 45 4.1. Material characterization ..................................... 45 4.1.1. Scanning electron microscopy (SEM) ................. 45 4.1.2. N2 sorption isotherms .............................. 47 4.1.3. X-ray diffraction (XRD) ...................................... 48 4.1.4. Fourier transform infrared spectroscopy (FTIR) ..................... 49 4.1.5. X-ray photoelectron spectroscopy (XPS) ............ 48 4.1.6. Zeta potential ............... 51 4.2. Ion transport properties ................................. 52 4.3. Osmotic energy harvesting .................................. 53 4.3.1. Preferential direction of ion pathway ................... 53 4.3.2. Redox potential and conversion efficiency ................... 55 4.3.3. Osmotic energy harvesting in artificial seawater and river water............ 57 4.3.4. Osmotic energy harvesting in different electrolytes ................... 59 4.3.5. Osmotic energy harvesting in hypersaline environment ............... 61 4.3.6. Selective layer thickness effect ............................ 63 4.3.7. ANM thickness effect ............................. 65 4.3.8. Effective testing area................................ 67 4.3.9. Comparison with other state-of-the-art-membrane ........................ 69 4.4. Stability tests ................ 71 Chapter 5 Conclusion ................... 74 References .................................... 75 List of Figures Figure 1.1 Metallic 2D MoS2 with CNFs (reproduced from ref. [27]). ...................... 21 Figure 1.2 GO sheets cross-linked with ANFs (reproduced from ref. [30]). ............. 22 Figure 1.3 Ti3C2Tx MXene-based membrane with CNFs (reproduced from ref. [31])...... 22 Figure 1.4 Protein ion channels-inspired UiO-66-NH2@ANM (reproduced from ref. [32])...... 23 Figure 1.5 MOF based heterogeneous membrane with sub-2 nm channels. (reproduced from ref. [35]). ............................. 24 Figure 1.6 COF based heterogeneous membrane with sub-2 nm channels. (reproduced from ref. [36]). ............................. 25 Figure 2.1 Schematic illustration of an electrical double layer (EDL). ...................... 27 Figure 2.3 Effect of nanopore channel size on ion selectivity. ................................... 29 Figure 2.4 Illustartion of the membrane conductance plot with salt concentration, reavling surface-charge-governed ion transport if the salt concentration is sufficiently low........ 30 Figure 2.5 Schematic of an RED system. ......................... 32 Figure 2.6 Dependence of power density on external resistance. ............................. 33 Figure 2.7 Electric circuit diagram of the proposed osmotic energy harvesting system and the I-V response curves of the overall system (dark pink) and the membrane (blue-green). .. 34 Figure 3.1 Fabrication process of alumina nanochannel membrane (ANM) via oxalic acid anodization ........................... 41 Figure 3.2 Fabrication process of TTSBI-Ti@CNT/ANM via in situ interfacial synthesis. ...................................... 42 Figure 3.3 Device setup of osmotic energy conversions test with different electrolyte concentrations. ............................. 43 Figure 4.1 SEM images showing the (a) top view and (b) cross-section view of the ANM support. ............................ 45 Figure 4.2 Cross-sectional SEM images of (a) ca. 27.5 μm and (b) ca. 40.6 μm ANM. ... 46 Figure 4.3 SEM image of the top view of TTSBI-Ti@CNT/ANM and the corresponding EDX signal mapping showing the distribution of Ti and C. ................ 47 Figure 4.4 SEM image showing the cross-sectional morphology of the TTSBI-Ti@CNT/ANM. ........................... 47 Figure 4.5 (a) Adsorption and desorption isotherms of TTSBI-Ti particles at 77 K. (b) Pore size distribution of TTSBI-Ti. ..................................... 48 Figure 4.6 XRD profile of TTSBI-TI.................................. 49 Figure 4.7 FTIR spectra of TTSBI and TTSBI-Ti. ............. 50 Figure 4.8 XPS spectra of TTSBI-Ti membrane. (a) XPS survey spectrum and (b) high-resolution XPS spectrum.............. 51 Figure 4.9 Zeta potential of TTSBI-Ti powders tested in pure ethanol. ................... 52 Figure 4.10 Ion transport behaviour. (a) I-V curves of TTSBI-Ti@CNT/ANM and pure ANM at 10 mM KCl. (b) Conductance value as a function of KCl concentration...... 53 Figure 4.11 Preferential direction. I-V response curves of the salinity gradient harvesting system under two different configurations at 50-fold NaCl gradient. ........ 54 Figure 4.12 Current-voltage curves of the overall system (dark blue; measured) and the fabricated membrane (orange; obtained from redox potential calibration). ................ 56 Figure 4.13 Osmotic energy conversion of TTSBI-Ti@CNT/ANM under 50-fold NaCl gradient. (a) Current density and (b) power density as a function of resistance. (c) Average power densities of TTSBI-Ti@CNT/ANM and CNT/ANM. ....................... 58 Figure 4.14 Osmotic energy conversion under 50-fold salinity gradients. (a) Current density and (b) power density as a function of resistance. (c) Average power density comparison between the four electrolytes............................ 60 Figure 4.15 Osmotic energy conversion in 500-fold NaCl gradient. (a) Current density and (b) power density as a function of resistance. (c) Average power density comparison between TTSBI-Ti@CNT/ANM and CNT/ANM support. ..................... 62 Figure 4.16 Osmotic energy conversion of varied selective layer thicknesses in 500-fold NaCl gradient. (a) Current density and (b) power density as a function of resistance. (c) Average power density comparison between the three thicknesses. ...................... 64 Figure 4.17 Osmotic energy conversion with varied ANM thicknesses under 500-fold NaCl gradient. (a) Current density and (b) power density as a function of resistance. (c) Average power density comparison between the three thicknesses. ........................... 66 Figure 4.18 Osmotic energy conversion under varied testing areas in 500-fold NaCl gradient. (a) Current density and (b) power density as a function of resistance. (c) Average power density comparison between the three testing areas. .......................... 68 Figure 4.19 Comparison chart of osmotic power density between the fabricated membrane and other ion-selective membranes reported previously under 500-fold NaCl gradient. ....................................... 69 Figure 4.20 SEM image of the top viw of TTSBI-Ti@CNT/ANM soaked in 5 M NaCl for 3 days and the corresponding EDX signal mapping showing the distribution of Ti. ......... 71 Figure 4.21 Stability of osmotic power density of TTSBI-Ti@CNT/ANM over 7 days under 500-fold NaCl gradient. ..... 72 Figure 4.22 Current and power densities of TTSBI-Ti@CNT/ANM from Day 1 to Day 7 during the stability test. ............. 73 List of Tables Table 1.1 The osmotic power generation of the bio-inspired solid-state heterogeneous membranes under a 500 mM/10 mM electrolyte ratio......... 19 Table 2.1 Debye length in various concentrations of single valence electrolyte solution. ........................................ 28 Table 3.1 The chemicals used in the fabrication of alumina nanochannel membrane. .................................... 35 Table 3.2 The chemicals used in the fabrication of TTSBI-Ti@CNT/ANM. ............ 36 Table 4.1 Voc, Vred, Vdiff , transference number (t+) and maximum efficiency (?max) at 50-fold and 500-fold NaCl gradients. .................................. 57 Table 4.2 Hydrated radius and mobility of the ionic species present in this study. .... 61 Table 4.3 A list of literatures present in Figure 4.18........... 70

    [1] Shafiee, S.; Topal, E., An Econometrics View of Worldwide Fossil Fuel Consumption and the Role of US. Energy Policy 2008, 36, 775-786.
    [2] Maciejczyk, P.; Chen, L. C.; Thurston, G., The Role of Fossil Fuel Combustion Metals in PM2.5 Air Pollution Health Associations. Atmosphere 2021, 12, 1086.
    [3] Gerland, P.; Raftery, A. E.; Sevcikova, H.; Li, N.; Gu, D. A.; Spoorenberg, T.; Alkema, L.; Fosdick, B. K.; Chunn, J.; Lalic, N.; Bay, G.; Buettner, T.; Heilig, G. K.; Wilmoth, J., World Population Stabilization Unlikely This Century. Science 2014, 346, 234-237.
    [4] Kamat, P. V., Meeting the Clean Energy Demand: Nanostructure Architectures for Solar Energy Conversion. J. Phys. Chem. C 2007, 111, 2834-2860.
    [5] Chu, S.; Majumdar, A., Opportunities and Challenges for a Sustainable Energy Future. Nature 2012, 488, 294-303.
    [6] Wagner, B.; Hauer, C.; Schoder, A.; Habersack, H., A Review of Hydropower in Austria: Past, Present and Future Development. Renew. Sustain. Energy Rev. 2015, 50, 304-314.
    [7] Herbert, G. M. J.; Iniyan, S.; Sreevalsan, E.; Rajapandian, S., A Review of Wind Energy Technologies. Renew. Sustain. Energy Rev. 2007, 11, 1117-1145.
    [8] Brunet, C.; Savadogo, O.; Baptiste, P.; Bouchard, M. A., Shedding Some Light on Photovoltaic Solar Energy in Africa - a Literature Review. Renew. Sustain. Energy Rev. 2018, 96, 325-342.
    [9] What Is U.S. Electricity Generation by Energy Source?. https://www.eia.gov/tools/faqs/faq.php?id=427&t=3 (accessed 2023/06/14).
    [10] Zhang, Z.; Wen, L. P.; Jiang, L., Nanofluidics for Osmotic Energy Conversion. Nat. Rev. Mater. 2021, 6, 622-639.
    [11] Jia, Z. J.; Wang, B. G.; Song, S. Q.; Fan, Y. S., Blue Energy: Current Technologies for Sustainable Power Generation from Water Salinity Gradient. Renew. Sustain. Energy Rev. 2014, 31, 91-100.
    [12] How Much Water Is There on Earth? . https://www.usgs.gov/special-topics/water-science-school/science/how-much-water-there-earth#:~:text=The%20volume%20of%20all%20water,more%20than%201.1%20trillion%20gallons. (accessed 2023/06/14).
    [13] Khan, N.; Kalair, A.; Abas, N.; Haider, A., Review of Ocean Tidal, Wave and Thermal Energy Technologies. Renew. Sustain. Energy Rev. 2017, 72, 590-604.
    [14] Siria, A.; Bocquet, M. L.; Bocquet, L., New Avenues for the Large-Scale Harvesting of Blue Energy. Nat. Rev. Chem. 2017, 1, 0091.
    [15] Chu, C.-W.; Fauziah, A. R.; Yeh, L.-H., Optimizing Membranes for Osmotic Power Generation. Angew. Chem. Int. Ed. 2023, 62, e202303582.
    [16] Pan, S. F.; Liu, P.; Li, Q.; Zhu, B.; Liu, X. L.; Lao, J. C.; Gao, J.; Jiang, L., Toward Scalable Nanofluidic Osmotic Power Generation from Hypersaline Water Sources with a Metal-Organic Framework Membrane. Angew. Chem. Int. Ed. 2023, 62, e202218129.
    [17] Zhang, S. X.; Ciora, R.; Sengupta, B.; Li, H. Z.; Belfort, G.; Li, S. G.; Zhou, R. F.; Yu, M., Ultrathin Microporous Metal-Organic Network Membranes for Molecular Separation. J. Mater. Chem. A 2021, 9, 25531-25538.
    [18] Pattle, R. E., Production of Electric Power by Mixing Fresh and Salt Water in the Hydroelectric Pile. Nature 1954, 174, 660.
    [19] Ma, Y.; Yeh, L.-H.; Lin, C.-Y.; Mei, L.; Qian, S., pH-Regulated Ionic Conductance in a Nanochannel with Overlapped Electric Double Layers. Anal. Chem. 2015, 87, 4508-4514.
    [20] Feng, J.; Graf, M.; Liu, K.; Ovchinnikov, D.; Dumcenco, D.; Heiranian, M.; Nandigana, V.; Aluru, N. R.; Kis, A.; Radenovic, A., Single-Layer MoS2
    Nanopores as Nanopower Generators. Nature 2016, 536, 197-200.
    [21] Zhang, H.; Tian, Y.; Jiang, L., Fundamental Studies and Practical Applications of Bio-Inspired Smart Solid-State Nanopores and Nanochannels. Nano Today 2016, 11, 61-81.
    [22] Gao, J.; Liu, X. L.; Jiang, Y. N.; Ding, L. P.; Jiang, L.; Guo, W., Understanding the Giant Gap between Single-Pore- and Membrane-Based Nanofluidic Osmotic Power Generators. Small 2019, 15, 1804279.
    [23] Yazda, K.; Bleau, K.; Zhang, Y.; Capaldi, X.; St-Denis, T.; Grutter, P.; Reisner, W. W., High Osmotic Power Generation Via Nanopore Arrays in Hybrid Hexagonal Boron Nitride/Silicon Nitride Membranes. Nano Lett. 2021, 21, 4152-4159.
    [24] Zhang, Z.; He, L.; Zhu, C.; Qian, Y.; Wen, L.; Jiang, L., Improved Osmotic Energy Conversion in Heterogeneous Membrane Boosted by Three-Dimensional Hydrogel Interface. Nat. Comm. 2020, 11, 875.
    [25] Chen, J.; Xin, W.; Kong, X.-Y.; Qian, Y.; Zhao, X.; Chen, W.; Sun, Y.; Wu, Y.; Jiang, L.; Wen, L., Ultrathin and Robust Silk Fibroin Membrane for High-Performance Osmotic Energy Conversion. ACS Energy Lett. 2020, 5, 742-748.
    [26] Hou, S.; Zhang, Q.; Zhang, Z.; Kong, X.; Lu, B.; Wen, L.; Jiang, L., Charged Porous Asymmetric Membrane for Enhancing Salinity Gradient Energy Conversion. Nano Energy 2021, 79, 105509.
    [27] Zhu, C.; Liu, P.; Niu, B.; Liu, Y.; Xin, W.; Chen, W.; Kong, X.-Y.; Zhang, Z.; Jiang, L.; Wen, L., Metallic Two-Dimensional MoS2 Composites as High-Performance Osmotic Energy Conversion Membranes. J. Am. Chem. Soc. 2021, 143, 1932-1940.
    [28] Zhou, S.; Xie, L.; Zhang, L.; Wen, L.; Tang, J.; Zeng, J.; Liu, T.; Peng, D.; Yan, M.; Qiu, B.; Liang, Q.; Liang, K.; Jiang, L.; Kong, B., Interfacial Super-
    Assembly of Ordered Mesoporous Silica–Alumina Heterostructure Membranes with Ph-Sensitive Properties for Osmotic Energy Harvesting. ACS Appl. Mater. Interfaces 2021, 13, 8782-8793.
    [29] Wang, Y.; Chen, H.; Zhai, J., Gap Confinement Effect of a Tandem Nanochannel System and Its Application in Salinity Gradient Power Generation. ACS Appl. Mater. Interfaces 2021, 13, 41159-41168.
    [30] Chen, J.; Xin, W.; Chen, W.; Zhao, X.; Qian, Y.; Kong, X.-Y.; Jiang, L.; Wen, L., Biomimetic Nanocomposite Membranes with Ultrahigh Ion Selectivity for Osmotic Power Conversion. ACS Cent. Sci. 2021, 7, 1486-1492.
    [31] Liu, P.; Zhou, T.; Yang, L.; Zhu, C.; Teng, Y.; Kong, X.-Y.; Wen, L., Synergy of Light and Acid–Base Reaction in Energy Conversion Based on Cellulose Nanofiber Intercalated Titanium Carbide Composite Nanofluidics. Energy Environ. Sci. 2021, 14, 4400-4409.
    [32] Liu, Y.-C.; Yeh, L.-H.; Zheng, M.-J.; Wu, K. C.-W., Highly Selective and High-Performance Osmotic Power Generators in Subnanochannel Membranes Enabled by Metal-Organic Frameworks. Sci. Adv. 2021, 7, eabe9924.
    [33] Chen, W.; Dong, T.; Xiang, Y.; Qian, Y.; Zhao, X.; Xin, W.; Kong, X.-Y.; Jiang, L.; Wen, L., Ionic Crosslinking-Induced Nanochannels: Nanophase Separation for Ion Transport Promotion. Adv. Mater. 2022, 34, 2108410.
    [34] Chang, C.-W.; Chu, C.-W.; Su, Y.-S.; Yeh, L.-H., Space Charge Enhanced Ion Transport in Heterogeneous Polyelectrolyte/Alumina Nanochannel Membranes for High-Performance Osmotic Energy Conversion. J. Mater. Chem. A 2022, 10, 2867-2875.
    [35] Li, Z.-Q.; Zhu, G.-L.; Mo, R.-J.; Wu, M.-Y.; Ding, X.-L.; Huang, L.-Q.; Wu, Z.-Q.; Xia, X.-H., Light-Enhanced Osmotic Energy Harvester Using Photoactive Porphyrin Metal–Organic Framework Membranes. Angew. Chem. Int. Ed. 2022,
    61, e202202698.
    [36] Gao, M.; Zheng, M.-J.; El-Mahdy, A. F. M.; Chang, C.-W.; Su, Y.-C.; Hung, W.-H.; Kuo, S.-W.; Yeh, L.-H., A Bioinspired Ionic Diode Membrane Based on Sub-2 nm Covalent Organic Framework Channels for Ultrahigh Osmotic Energy Generation. Nano Energy 2023, 105, 108007.
    [37] Tong, X.; Liu, S.; Crittenden, J.; Chen, Y., Nanofluidic Membranes to Address the Challenges of Salinity Gradient Power Harvesting. ACS Nano 2021, 15, 5838-5860.
    [38] Freund, R.; Zaremba, O.; Arnauts, G.; Ameloot, R.; Skorupskii, G.; Dincă, M.; Bavykina, A.; Gascon, J.; Ejsmont, A.; Goscianska, J.; Kalmutzki, M.; Lächelt, U.; Ploetz, E.; Diercks, C. S.; Wuttke, S., The Current Status of MOF and COF Applications. Angew. Chem. Int. Ed. 2021, 60, 23975-24001.
    [39] Parsons, R., Models of the Electrical Double Layer. In Trends in Interfacial Electrochemistry, Silva, A. F., Ed. Springer Netherlands: Dordrecht, 1986; pp 373-385.
    [40] Xiao, K.; Jiang, L.; Antonietti, M., Ion Transport in Nanofluidic Devices for Energy Harvesting. Joule 2019, 3, 2364-2380.
    [41] Kohonen, M. M.; Karaman, M. E.; Pashley, R. M., Debye Length in Multivalent Electrolyte Solutions. Langmuir 2000, 16, 5749-5753.
    [42] Corry, B.; Chung, S. H., Mechanisms of Valence Selectivity in Biological Ion Channels. Cell. Mol. Life Sci. 2006, 63, 301-315.
    [43] Cao, L.; Guo, W.; Ma, W.; Wang, L.; Xia, F.; Wang, S.; Wang, Y.; Jiang, L.; Zhu, D., Towards Understanding the Nanofluidic Reverse Electrodialysis System: Well Matched Charge Selectivity and Ionic Composition. Energy Environ. Sci. 2011, 4, 2259-2266.
    [44] Guo, W.; Cao, L.; Xia, J.; Nie, F.-Q.; Ma, W.; Xue, J.; Song, Y.; Zhu, D.; Wang,
    Y.; Jiang, L., Energy Harvesting with Single-Ion-Selective Nanopores: A Concentration-Gradient-Driven Nanofluidic Power Source. Adv. Funct. Mater. 2010, 20, 1339-1344.
    [45] Graf, M.; Lihter, M.; Unuchek, D.; Sarathy, A.; Leburton, J.-P.; Kis, A.; Radenovic, A., Light-Enhanced Blue Energy Generation Using MoS2 Nanopores. Joule 2019, 3, 1549-1564.
    [46] Schoch, R. B.; Han, J.; Renaud, P., Transport Phenomena in Nanofluidics. Rev. Mod. Phys. 2008, 80, 839-883.
    [47] Yeh, L.-H.; Zhang, M.; Qian, S., Ion Transport in a pH-Regulated Nanopore. Anal. Chem. 2013, 85, 7527-7534.
    [48] Qin, H.; Wu, H.; Zeng, S.-M.; Yi, F.; Qin, S.-Y.; Sun, Y.; Ding, L.; Wang, H., Harvesting Osmotic Energy from Proton Gradients Enabled by Two-Dimensional Ti3C2Tx MXene Membranes. Adv. Membr. 2022, 2, 100046.
    [49] Liu, P.; Sun, Y.; Zhu, C.; Niu, B.; Huang, X.; Kong, X.-Y.; Jiang, L.; Wen, L., Neutralization Reaction Assisted Chemical-Potential-Driven Ion Transport through Layered Titanium Carbides Membrane for Energy Harvesting. Nano Lett. 2020, 20, 3593-3601.
    [50] Hong, J. G.; Zhang, B.; Glabman, S.; Uzal, N.; Dou, X.; Zhang, H.; Wei, X.; Chen, Y., Potential Ion Exchange Membranes and System Performance in Reverse Electrodialysis for Power Generation: A Review. J. Membr. Sci. 2015, 486, 71-88.
    [51] Post, J. W.; Veerman, J.; Hamelers, H. V. M.; Euverink, G. J. W.; Metz, S. J.; Nymeijer, K.; Buisman, C. J. N., Salinity-Gradient Power: Evaluation of Pressure-Retarded Osmosis and Reverse Electrodialysis. J. Membr. Sci. 2007, 288, 218-230.
    [52] Gao, J.; Guo, W.; Feng, D.; Wang, H.; Zhao, D.; Jiang, L., High-Performance
    Ionic Diode Membrane for Salinity Gradient Power Generation. J. Am. Chem. Soc. 2014, 136, 12265-12272.
    [53] Siria, A.; Poncharal, P.; Biance, A.-L.; Fulcrand, R.; Blase, X.; Purcell, S. T.; Bocquet, L., Giant Osmotic Energy Conversion Measured in a Single Transmembrane Boron Nitride Nanotube. Nature 2013, 494, 455-458.
    [54] Zhou, H. C.; Kitagawa, S., Metal-Organic Frameworks (MOFs). Chem. Soc. Rev. 2014, 43, 5415-5418.
    [55] Biesinger, M. C.; Lau, L. W. M.; Gerson, A. R.; Smart, R. S. C., Resolving Surface Chemical States in Xps Analysis of First Row Transition Metals, Oxides and Hydroxides: Sc, Ti, V, Cu and Zn. Appl. Surf. Sci. 2010, 257, 887-898.
    [56] Cervera, J.; Alcaraz, A.; Schiedt, B.; Neumann, R.; Ramírez, P., Asymmetric Selectivity of Synthetic Conical Nanopores Probed by Reversal Potential Measurements. J. Phys. Chem. C 2007, 111, 12265-12273.
    [57] Hashemifar, F.; Esfandiar, A., Oppositely Charged MXene Fibers as a Highly Efficient Osmotic Power Generator from Sea and River Water. J. Mater. Chem. A 2022, 10, 24915-24926.
    [58] Su, Y.-S.; Hsu, S.-C.; Peng, P.-H.; Yang, J.-Y.; Gao, M.; Yeh, L.-H., Unraveling the Anomalous Channel-Length-Dependent Blue Energy Conversion Using Engineered Alumina Nanochannels. Nano Energy 2021, 84, 105930.
    [59] Zhang, Z.; Sui, X.; Li, P.; Xie, G.; Kong, X.-Y.; Xiao, K.; Gao, L.; Wen, L.; Jiang, L., Ultrathin and Ion-Selective Janus Membranes for High-Performance Osmotic Energy Conversion. J. Am. Chem. Soc. 2017, 139, 8905-8914.
    [60] Zhu, X.; Hao, J.; Bao, B.; Zhou, Y.; Zhang, H.; Pang, J.; Jiang, Z.; Jiang, L., Unique Ion Rectification in Hypersaline Environment: A High-Performance and Sustainable Power Generator System. Sci. Adv. 2018, 4, eaau1665.
    [61] Wu, Y.; Xin, W.; Kong, X.-Y.; Chen, J.; Qian, Y.; Sun, Y.; Zhao, X.; Chen, W.;
    Jiang, L.; Wen, L., Enhanced Ion Transport by Graphene Oxide/Cellulose Nanofibers Assembled Membranes for High-Performance Osmotic Energy Harvesting. Mater. Horiz. 2020, 7, 2702-2709.
    [62] Zhao, X.; Lu, C.; Yang, L.; Chen, W.; Xin, W.; Kong, X.-Y.; Fu, Q.; Wen, L.; Qiao, G.; Jiang, L., Metal Organic Framework Enhanced SPEEK/SPSF Heterogeneous Membrane for Ion Transport and Energy Conversion. Nano Energy 2021, 81, 105657.
    [63] Hao, J.; Bao, B.; Zhou, J.; Cui, Y.; Chen, X.; Zhou, J.; Zhou, Y.; Jiang, L., A Euryhaline-Fish-Inspired Salinity Self-Adaptive Nanofluidic Diode Leads to High-Performance Blue Energy Harvesters. Adv. Mater. 2022, 34, 2203109.
    [64] Zhu, Q.; Li, Y.; Qian, Q.; Zuo, P.; Guiver, M. D.; Yang, Z.; Xu, T., A Sulfonated Ultramicroporous Membrane with Selective Ion Transport Enables Osmotic Energy Extraction from Multiform Salt Solutions with Exceptional Efficiency. Energy Environ. Sci. 2022, 15, 4148-4156.
    [65] Wang, J.; Wang, L.; Shao, N.; He, M.; Shang, P.; Cui, Z.; Liu, S.; Jiang, N.; Wang, X.; Wang, L., Heterogeneous Two-Dimensional Lamellar Ti3C2Tx Membrane for Osmotic Power Harvesting. Chem. Eng. J. 2023, 452, 139531.
    [66] Ling, H. Y.; Xin, W. W.; Qian, Y. C.; He, X. F.; Yang, L. S.; Chen, W. P.; Wu, Y. D.; Du, H. Q.; Liu, Y.; Kong, X. Y.; Jiang, L.; Wen, L. P., Heterogeneous Electrospinning Nanofiber Membranes with Ph-Regulated Ion Gating for Tunable Osmotic Power Harvesting. Angew. Chem. Int. Ed. 2023, 62, e202212120.

    QR CODE