簡易檢索 / 詳目顯示

研究生: 林璟鴻
Jing-Hong Lin
論文名稱: 具可調整徑向形狀及微奈米線狀結構之神經引導導管
Nerve Guidance Conduits with Adjustable Radial Shape and Micro/Nano Line Structures
指導教授: 張復瑜
Fuh-Yu Chang
口試委員: 鄭逸琳
Yih-Lin Cheng
周育任
Yu-Jen Chou
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 74
中文關鍵詞: 神經引導導管液滴塗佈法周邊神經損傷
外文關鍵詞: Nerve guidance conduits, Drop-cast, Peripheral nerve injury
相關次數: 點閱:140下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 空心的神經引導導管的使用已經是臨床上周邊神經損傷治療的重要方法,但其無法有效地修復大於2cm的傷口,且因導管能生產的尺寸規格有限,所以無法符合所有的神經直徑,使得手術時間可能增加且影響術後神經癒合速度。此研究提出了創新的神經引導導管設計,使之能吻合多種神經尺寸,藉此降低生產成本且加速手術的進行。同時為了進一步促進神經再生的效率,在導管的內側面加上了線狀表面結構,使此導管能修復更長的神經缺陷。
    為了生產此特殊設計之神經引導導管,本實驗開發以液滴塗佈法(Drop-cast)為主的製程,成功地製作出擁有線狀結構的聚乳酸薄膜,並利用溶劑蒸發所產生的應力將薄膜捲曲成管狀。為了瞭解此製程及此製程應用於其他領域之可能性,本實驗也探討了表面結構、溶液濃度以及固化時的溶劑含量對於最終管徑控制的影響,同時展示了利用聚乙烯醇˴金屬模具及玻璃作為母模的可行性,為這個製程和結構的選用提供了更多的選擇。
    研究結果顯示液滴塗佈法能夠製作出內面擁有微奈米線狀表面結構的可調整直徑神經引導導管,且利用溶劑的控制,達成最終成品的外徑尺寸控制。因液滴塗佈法是高再現性且具成本效益的製程,所以此方法將有機會達成神經引導導管的大量生產。


    Hollow nerve guidance conduits (NGCs) have been approved for the treatment in repairing peripheral nerve injury clinically, but it is not an effective way to repair the nerve defect which is longer than 2cm. Also, the availability of diameter from commercial hollow NGCs is limited, so it can not fit every nerve defect. This will increase the surgery operation time and recovery time.
    This research brought out an innovative nerve guidance conduit design, which has an adjustable radial shape to fit different nerve diameter and incorporated directional micro/nano linear groove structures on inner surface to facilitate the nerve regeneration distance.
    In order to fabricate this innovative NGCs, the research proposed a drop-cast based process and discussed the relationship between surface structure, initial solvent concentration, the volume fraction of solvent at which the film solidifies and the diameter of conduits. Furthermore, the result showed that glass, polyvinyl alcohol and metal can also be chosen as a substrate for drop-cast process.
    According to the experiments, drop-cast process can fabricate the adjustable nerve guidance conduits with inside micro/nano groove patterns, and the diameter of conduits can be controlled by the evaporation of solvent. Drop-cast is also a high reproducible and cost-effective process, so using drop-cast to fabricate patterned nerve guidance conduits is a promising way to achieve mass production.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 X 第一章 緒論 1 1.1 前言 1 1.2 研究背景 2 1.3 研究動機與目的 3 第二章 文獻回顧 5 2.1 導管設計 5 2.1.1 神經再生進程 6 2.1.2 結構選用 9 2.1.3 聚乳酸特性 10 2.1.4 聚乳酸降解 11 2.2 聚乙烯醇模具製造 13 2.3 聚乳酸導管成形 15 2.3.1 液滴塗佈及內應力 15 2.3.2 薄膜捲曲行為與應力 17 第三章 實驗方法與規劃 19 3.1 可調整直徑式導管之概念 22 3.2 實驗方法 23 3.2.1 聚乙烯醇(PVA)模具製作 24 3.2.2 聚乳酸線狀結構薄膜的製造 25 3.2.2.1 線狀結構對圓管直徑的影響 26 3.2.2.2 溶劑濃度及直徑之關聯 26 3.2.2.3 溶劑殘存及機械強度測試-DMA 27 3.3 實驗材料與儀器 28 3.3.1 實驗所需材料 28 3.3.2 聚碳酸酯(PC)母模製作 29 3.3.2.1 CD模具: 29 3.3.2.2 DVD模具: 31 3.3.3 儀器設備 33 3.3.3.1 加熱平板 33 3.3.3.2 光學顯微鏡 34 3.3.3.3 掃描式電子顯微鏡 35 3.3.3.4 動態機械分析儀 37 第四章 實驗結果與討論 38 4.1 聚碳酸酯(PC)母模製作 38 4.2 聚乳酸(PLA)薄膜製作 40 4.3 溶劑輔助薄膜捲曲製程 44 4.4 圓棒輔助成形 46 4.4.1 溶劑含量及機械性質 48 4.5 線狀結構對圓管直徑的影響 50 4.6 溶劑濃度及直徑之關聯 52 4.7 金屬模具之應用 55 4.8 導管調整功能展示 57 第五章 結論與未來展望 58 5.1. 結論 58 5.2. 未來展望 59 參考文獻 60

    [1] V. Mukhatyar, L. Karumbaiah, J. Yeh, R. Bellamkonda, Tissue engineering strategies designed to realize the endogenous regenerative potential of peripheral nerves, Advanced Materials 21(46) (2009) 4670-4679.
    [2] K.R. Maravilla, B.C. Bowen, Imaging of the peripheral nervous system: evaluation of peripheral neuropathy and plexopathy, American Journal of Neuroradiology 19(6) (1998) 1011-1023.
    [3] S.K. Lee, S.W. Wolfe, Peripheral nerve injury and repair, JAAOS-Journal of the American Academy of Orthopaedic Surgeons 8(4) (2000) 243-252.
    [4] W. Daly, L. Yao, D. Zeugolis, A. Windebank, A. Pandit, A biomaterials approach to peripheral nerve regeneration: bridging the peripheral nerve gap and enhancing functional recovery, Journal of the Royal Society Interface 9(67) (2011) 202-221.
    [5] M. Siemionow, G. Brzezicki, Current techniques and concepts in peripheral nerve repair, International Review of Neurobiology 87 (2009) 141-172.
    [6] M. Sarker, S. Naghieh, A.D. McInnes, D.J. Schreyer, X. Chen, Strategic design and fabrication of nerve guidance conduits for peripheral nerve regeneration, Biotechnology Journal 13(7) (2018) 1700635.
    [7] J.S. Belkas, M.S. Shoichet, R. Midha, Peripheral nerve regeneration through guidance tubes, Neurological Research 26(2) (2004) 151-160.
    [8] S. Mobasseri, G. Terenghi, S. Downes, Micro-structural geometry of thin films intended for the inner lumen of nerve conduits affects nerve repair, Journal of Materials Science: Materials in Medicine 24(7) (2013) 1639-1647.
    [9] M. Murariu, P. Dubois, PLA composites: From production to properties, Advanced Drug Delivery Reviews 107 (2016) 17-46.
    [10] S. Gogolewski, M. Jovanovic, S. Perren, J. Dillon, M. Hughes, Tissue response and in vivo degradation of selected polyhydroxyacids: polylactides (PLA), poly (3‐hydroxybutyrate)(PHB), and poly (3‐hydroxybutyrate‐co‐3‐hydroxyvalerate)(PHB/VA), Journal of Biomedical Materials Research 27(9) (1993) 1135-1148.
    [11] R. Mukherjee, G.K. Patil, A. Sharma, Solvent vapor-assisted imprinting of polymer films coated on curved surfaces with flexible PVA stamps, Industrial & Engineering Chemistry Research 48(19) (2009) 8812-8818.
    [12] S. Croll, The origin of residual internal stress in solvent‐cast thermoplastic coatings, Journal of Applied Polymer Science 23(3) (1979) 847-858.
    [13] G.G. Stoney, The tension of metallic films deposited by electrolysis, Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 82(553) (1909) 172-175.
    [14] G. Janssen, M. Abdalla, F. Van Keulen, B. Pujada, B. Van Venrooy, Celebrating the 100th anniversary of the Stoney equation for film stress: Developments from polycrystalline steel strips to single crystal silicon wafers, Thin Solid Films 517(6) (2009) 1858-1867.
    [15] J.E. Sader, Surface stress induced deflections of cantilever plates with applications to the atomic force microscope: V-shaped plates, Journal of Applied Physics 91(11) (2002) 9354-9361.
    [16] J. Tamayo, J.J. Ruz, V. Pini, P. Kosaka, M. Calleja, Quantification of the surface stress in microcantilever biosensors: revisiting Stoney’s equation, Nanotechnology 23(47) (2012) 475702.
    [17] UCI-IMRI, FEI Magellan 400 XHR SEM: http://www.imri.uci.edu/user-facilities/laboratory-electron-and-x-ray-instrumentation/fei-magellan-400-xhr-sem
    [18] TA Instrucment, DMA 2980 Dynamic Mechanical Analyzer
    http://tainstruments.com/pdf/literature/TA-232_DMA%202980.pdf

    無法下載圖示 全文公開日期 2024/08/21 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE