簡易檢索 / 詳目顯示

研究生: 張良平
Liang-Ping Chang
論文名稱: 自動化線光譜峰值偵測與基線校正演算法開發和應用
Development and Application of an Algorithm for Automated Peak Detection and Baseline Correction for Line Spectrum
指導教授: 柯正浩
Cheng-Hao Ko
口試委員: 徐勝均
Sheng-Dong Xu
沈志霖
Jhin-Lin Shen
學位類別: 碩士
Master
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 97
中文關鍵詞: 峰值偵測平滑處理基線校正希爾伯特轉換高斯擬合波長校正
外文關鍵詞: Peak Detection, Smoothing Processing, Baseline Correction, Hilbert Transform, Gaussian Fitting, Wavelength Correction
相關次數: 點閱:717下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 光譜訊號的特徵峰值是光譜訊號分析中重要資訊之一,在人為操作的情況下特徵峰值的位置簡單地看出來並選取出粗略的位置,然而要自動化找出精確峰值位置就會因為光譜本身受到雜訊以及基線的影響導致實行的困難。本研究建立了一個演算方法能夠將線光譜的峰值偵測達到自動化,在流程中針對雜訊以及基線皆有對應的處理。對於雜訊採用Savitzky-Golay平滑濾波器將特徵保留的同時去除雜訊,基線的校正使用AWFPSI演算法來進行自動化處理。雜訊與基線的處理結束後利用希爾伯特轉換將每個峰值分割出來再個別透過高斯擬合來得到精確的峰值位置。利用模擬訊號進行演算法測試得到峰值位置誤差百分比0.1%以下的結果。接著再以實際的光譜訊號進行測試應用於波長校正流程,光譜訊號包含光譜儀量測之訊號以及光譜影像,在實驗最後得到本研究自動化偵測到的峰值位置波長校正後與實際波長的誤差很小的結果。


    Peak is one of the important information in spectral analysis. It is easy to find peak location roughly by people, however, to automatically find the accurate peak location is very difficult because of the effect from noise and baseline. In this study we develop an automated algorithm of line spectrum peak detection and we have the processes for both noise and baseline in the procedure. We use the Savitzky-Golay filter to smoothing the signal and use the AWFPSI algorithm to do the baseline correction. After smoothing and baseline correction, we use the Hilbert transform to separate peaks and then do the Gaussian fitting for each peak to get the accurate peak location. About tests, first we use the algorithm in simulated signal, and get the result that the error is under 0.1%. And then, we apply the algorithm to experimental signals of both data from spectrometer and spectral images and do the wavelength correction. The results show that the error between the transformed wavelength and the real wavelength is very small.

    致謝 i 摘要 ii Abstract iii 目錄 iv 圖目錄 vi 表目錄 x 第一章 序論 1 1.1 研究背景 1 1.2 研究動機及目的 1 1.3 本文架構 2 第二章 基本理論 3 2.1 光譜理論 3 2.1.1 基本分光原理 3 2.1.2 光譜的分類 4 2.2 Savitzky-Golay濾波器 6 2.2.1 Savizky-Golay濾波器簡介 6 2.2.2 Savizky-Golay濾波器理論 8 2.3 連續小波轉換 11 2.4 希爾伯特轉換 11 2.5 高斯擬合 13 2.6 均方根誤差(RMSE)與決定係數("R2" ) 16 第三章 線光譜峰值偵測流程 18 3.1 流程總攬 18 3.2 基線校正 20 3.3 峰值位置偵測 24 第四章 實驗結果 25 4.1 模擬訊號測試 25 4.2 光譜儀光譜訊號測試 34 4.2.1 Ocean光譜儀量測之汞氬燈光譜 34 4.2.2 Ocean光譜儀量測之日光燈光譜 47 4.3 光譜影像測試 61 4.3.1 雷射光譜影像測試 61 4.3.2 汞氬燈光譜影像測試 83 第五章 結論 94 參考文獻 96

    [1] R. Gautam, S. Vanga, F. Ariese, and S. Umapathy, “Review of multidimensional data processing approaches for Raman and infrared spectroscopy,” EPJ Techniques and Instrumentation, vol. 2, no. 1, pp. 8, 2015/06/02, 2015.
    [2] T. Bocklitz, A. Walter, K. Hartmann, P. Rosch, and J. Popp, “How to pre-process Raman spectra for reliable and stable models?,” Anal Chim Acta, vol. 704, no. 1-2, pp. 47-56, Oct 17, 2011.
    [3] John W. Jewett, Jr. and Raymond A. Serway, Physics for Scientists and Engineers with Modern Physics, 8th ed. Canada: Mary Finch, 2010.
    [4] X. Prieto-Blanco, C. Montero-Orille, B. Couce, and R. d. l. Fuente, “Analytical design of an Offner imaging spectrometer,” Optics Express, vol. 14, no. 20, pp. 9156-9168, 2006/10/02, 2006.
    [5] A. Savitzky, and M. J. E. Golay, “Smoothing and Differentiation of Data by Simplified Least Squares Procedures,” Analytical Chemistry, vol. 36, no. 8, pp. 1627-1639, 1964/07/01, 1964.
    [6] H. G. Schulze, R. B. Foist, A. Ivanov, and R. F. B. Turner, “Fully Automated High-Performance Signal-to-Noise Ratio Enhancement Based on an Iterative Three-Point Zero-Order Savitzky—Golay Filter,” Applied Spectroscopy, vol. 62, no. 10, pp. 1160-1166, 2008/10/01, 2008.
    [7] 陳彥儒,「尋找用於光譜訊號平滑處理之最佳參數研究」,碩士論文,自動化及控制研究所,國立台灣科技大學,台北,2012。
    [8] Y. Chen, K. Yang, and H.-L. Liu, “Self-Adaptive Multi-Peak Detection Algorithm for FBG Sensing Signal,” IEEE Sensors Journal, vol. 16, no. 8, pp. 2658-2665, 2016.
    [9] M. S. Manikandan, and K. P. Soman, “A novel method for detecting R-peaks in electrocardiogram (ECG) signal,” Biomedical Signal Processing and Control, vol. 7, no. 2, pp. 118-128, 2012.
    [10] R. Mabrouki, B. Khaddoumi, and M. Sayadi, "R peak detection in electrocardiogram signal based on a combination between empirical mode decomposition and Hilbert transform." pp. 183-187, 2014.
    [11] L. Petrakis, “Spectral line shapes: Gaussian and Lorentzian functions in magnetic resonance,” Journal of Chemical Education, vol. 44, no. 8, pp. 432, 1967/08/01, 1967.
    [12] E. Ostertagová, “Modelling using Polynomial Regression,” Procedia Engineering, vol. 48, pp. 500-506, 2012.
    [13] S. He, S. Fang, X. Liu, W. Zhang, W. Xie, H. Zhang, D. Wei, W. Fu, and D. Pei, “Investigation of a genetic algorithm based cubic spline smoothing for baseline correction of Raman spectra,” Chemometrics and Intelligent Laboratory Systems, vol. 152, pp. 1-9, 2016.
    [14] H. G. Schulze, R. B. Foist, K. Okuda, A. Ivanov, and R. F. Turner, “A small-window moving average-based fully automated baseline estimation method for Raman spectra,” Appl Spectrosc, vol. 66, no. 7, pp. 757-64, Jul, 2012.
    [15] Z.-M. Zhang, S. Chen, and Y.-Z. Liang, “Baseline correction using adaptive iteratively reweighted penalized least squares,” Analyst, vol. 135, no. 5, pp. 1138-1146, 2010.
    [16] M. Morháč, “An algorithm for determination of peak regions and baseline elimination in spectroscopic data,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 600, no. 2, pp. 478-487, 2009.
    [17] A. F. Gan, G. Ruan, and J. Mo, “Baseline correction by improved iterative polynomial fitting with automatic threshold,” Chemometrics and Intelligent Laboratory Systems, vol. 82, no. 1-2, pp. 59-65, 2006.
    [18] F. Ruckstuhl, M. P. Jacobson, R. W. Field, and J. A. Dodd, “Baseline subtraction using robust local regression estimation,” Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 68, no. 2, pp. 179-193, 2001/01/15/, 2001.
    [19] F. Qian, Y. Wu, and P. Hao, “A fully automated algorithm of baseline correction based on wavelet feature points and segment interpolation,” Optics & Laser Technology, vol. 96, pp. 202-207, 2017

    無法下載圖示 全文公開日期 2023/08/09 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE