簡易檢索 / 詳目顯示

研究生: 林家慶
Chia-Ching Lin
論文名稱: IEEE 802.15.4下以優先權為基礎的動態調整超碼框機制結合保證時槽分配機制
Study on Priority Based Scheme for Dynamic Superframe Adjustment with GTS Allocation(PDSGTS) in IEEE 802.15.4
指導教授: 黎碧煌
Bih-Hwang Lee
口試委員: 鍾添曜
Tein-Yaw Chung
吳傳嘉
Chwan-Chia Wu
陳俊良
Jiann-Liang Chen
黎碧煌
Bih-Hwang Lee
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 74
中文關鍵詞: IEEE 802.15.4無線感測網路超碼框調整CSMA/CA
外文關鍵詞: IEEE 802.15.4, wireless sensor network, Superframe adjust, CSMA/CA
相關次數: 點閱:213下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    物聯網(Internet of Things; IoT)的發展越來越受到重視,逐漸改變人們生活習慣,未來也會有更多裝置設備連上網路。無線感測網路(wireless sensor network; WSN)是由多個感測節點裝置組成,經由無線傳輸方式來傳輸資料,其特點包括短距離傳輸、低成本、低功耗、頻寬要求低與裝置精簡。它可應用在不同的領域,例如: 農業、遠距離醫療照護、智慧電網、環境監測與工業自動化等。
    IEEE 802.15.4標準為無線感測網路的一種規範。標準中提供超碼框(superframe)結構傳輸資料,其中分成活動週期與非活動週期,長度分別由超碼框級數與訊標級數決定,但此兩參數不能因應網路負載做調整,可能降低產能、功耗增加或延遲變高。標準中定義裝置在競爭訪問週期間,使用載波檢測多重存取與碰撞避免(carrier sense multiple access with collision avoidance; CSMA/CA)機制來傳輸資料,但此機制的傳輸參數對所有訊框設定一致,無法滿足不同優先權訊框的傳輸需求。在免競爭週期間,裝置不必與其他裝置競爭傳輸通道,而是被分配到固定時間點傳送,稱為保證時槽(guaranteed time slots; GTSs),可提供即時性資料傳輸應用,但如果沒有考慮資料大小做分配,可能造成頻寬浪費問題。
    目前有許多改善標準的方法,提供不同無線感測網路應用達到需求,但這些方法只注重一兩項服務品質(quality of service; QoS)的改善,少有考慮多個需求。因此本論文提出以優先權為基礎的動態調整超碼框機制結合保證時槽分配(PDSGTS)。模擬結果顯示,PDSGTS機制與IEEE 802.15.4標準相比,可以有效提升有效產能並降低傳輸延遲。

    關鍵字: IEEE 802.15.4、無線感測網路、超碼框調整、CSMA/CA


    Abstract
    The development of the Internet of Things (IoT) has received increasing attention and gradually changes people's living habits. In the future, there will be more devices connected to the Internet. Wireless sensor network (WSN) is consisted of several sensor devices and transmits data through wireless transmission. It is characterized by its short distance transmission, low cost, low power consumption, low bandwidth requirements, and has a small device size. It can be applied in different fields such as: agriculture, telemedicine care, smart grid, environmental monitoring and industrial automation etc.
    The IEEE 802.15.4 standard is a specification for wireless sensing networks. The standard provides superframe structure to transmit data. It is divided into active period and inactive period, and the length is determined by superframe order and beacon order. However, these two parameters cannot be adjusted by considering the network traffic load, which may reduce the throughput, increase power consumption or add a delay. In the standard, the device uses the carrier sense multiple access with collision avoidance (CSMA/CA) mechanism to transmit data during the contention access period. Nevertheless, the transmission parameters of this mechanism are the same for all frames and cannot meet the transmission requirements of different priority frames. In the contention free period, the device does not have to compete with other devices for transmission channels. Instead, it is assigned to a specific time to do, known as guaranteed time slots (GTSs). It can provide for the transmission of real-time data, yet not consider the size of the data assignment may cause the problem of bandwidth waste.
    At present, there are many methods to improve the standard and provide different wireless sensor network applications to meet the requirements. But these methods only focus on one or two issues for quality of service (QoS), and with few considerations on multiple requirements. Therefore, this thesis proposes a priority based scheme to dynamic superframe adjustment with guaranteed time slot(PDSGTS). Simulation results show that compared with the IEEE 802.15.4 standard, the PDSGTS mechanism can effectively increase the goodput and reduce the transmission delay.

    Keywords: IEEE 802.15.4, wireless sensor network, Superframe adjust, CSMA/CA

    目次 摘要 i Abstract ii 目次 iv 圖目次 vii 表目次 x 第一章 緒論 1 1.1簡介 1 1.2研究動機與目的 2 1.3章節概要 3 第二章 研究背景 4 2.1 IEEE 802.15.4標準簡介 4 2.1.1裝置類別 4 2.1.2網路拓樸結構 5 2.1.3實體層介紹 6 2.1.4媒體存取控制副層介紹 9 2.1.5超碼框結構(superframe) 10 2.1.6載波偵測多重存取/碰撞避免機制(CSMA/CA) 11 2.1.7保證時槽配置(GTS allocation) 14 2.1.8資料傳輸模型 17 2.1.9訊框格式 23 2.2相關研究 31 2.2.1參數調整方法 31 2.2.2退後迴避機制修改方法 31 2.2.3工作週期調整方法 32 2.2.4保證時槽分配改善方法 33 第三章 PDSGTS機制介紹 34 3.1系統基本架構 34 3.2修改CSMA/CA傳輸參數 35 3.3保證時槽分配機制 36 3.3.1保證時槽相關訊框格式修改 37 3.3.2 保證時槽使用時機說明 40 3.3.3 保證時槽切割配置 40 3.4動態超碼框調整 42 3.4.1 競爭週期使用比例 43 3.4.2 訊框碰撞比例 43 3.5協調者流程 46 3.6裝置流程 48 第四章 系統模擬與結果分析 50 4.1模擬環境參數 50 4.2效能評估項目 52 4.2.1有效產能(Goodput) 52 4.2.2平均延遲時間(Delay) 52 4.2.3能量消耗(Energy Consumption) 53 4.3結果分析 54 4.3.1有效產能分析 54 4.3.2平均延遲時間分析 56 4.3.3能量消耗分析 60 4.3.4訊框丟棄率分析 61 4.3.5超碼框級數變化平均值分析 63 4.3.6超碼框級數設定比例分析 64 4.3.7 保證時槽配置數量分析 67 4.4 總結 69 第五章 結論 70 參考文獻 72

    [1] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari and M. Ayyash ”Internet of Things: A Survey on Enabling Technologies, Protocols, and Applications”, IEEE Communications Surveys & Tutorials, vol. 17, no. 4, pp. 2347-2376, Oct 2015
    [2] M. Khanafer, M. Guennoun, and H. T. Mouftah, “A Survey of Beacon-Enabled IEEE 802.15.4 MAC Protocols in Wireless Sensor Networks”, IEEE Communications Surveys & Tutorials, vol. 16, no. 2, pp. 856-876, Dec 2014.
    [3] IEEE 802 Working Group, “IEEE Standard for Local and metropolitan area networks--Part 15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs),” IEEE Std 802.15.4-2011 (Revision of IEEE Std 802.15.4-2006), pp.1-314, Sept. 5 2011.
    [4] M. S. Akbar, H. Yu and S. Cang, “TMP: Tele-Medicine Protocol for Slotted 802.15.4 With Duty-Cycle Optimization in Wireless Body Area Sensor Networks”, IEEE Sensors Journal, vol. 17, no. 6, pp. 1925-1936, Mar 2017
    [5] R. Lara, D. Benítez, A. Caamaño, M. Zennaro and J. Luis Rojo-Álvarez, “On Real-Time Performance Evaluation of Volcano-Monitoring Systems With Wireless Sensor Networks”, IEEE Sensors Journal, vol. 15, no. 6, pp. 3514-3523, Jun 2015
    [6] L. Leonardi, G. Patti, F. Battaglia and L. L. Bello, “Simulative assessments of the IEEE 802.15.4 CSMA/CA with Priority Channel Access in Structural Health Monitoring scenarios”, IEEE 15th International Conference on Industrial Informatics(INDIN), pp.375-380, Jul 2017
    [7] A. KOUBAA, M. ALVES and E. TOVAR, “i-GAME: an implicit GTS allocation mechanism in IEEE 802.15.4 for time-sensitive wireless sensor networks”, 18th Euromicro Conference on Real-Time Systems (ECRTS'06), pp. 183-192, Jul 2006
    [8] G. Anastasi, M. Conti and M. D. Francesco, “A Comprehensive Analysis of the MAC Unreliability Problem in IEEE 802.15.4 Wireless Sensor Networks”, IEEE Transactions on Industrial Informatics, vol. 7, no.1, pp. 52-65, Feb. 2011
    [9] Q. Liu and A. Czylwik, “A Priority-Based Adaptive Service -Differentiation Scheme for IEEE 802.15.4 Sensor Networks”, European Wireless 2014; 20th European Wireless Conference, pp. 927-932, May. 2014
    [10] M. M. Ahmed and S. M. Sadakatul Bari, “A Novel Spiral Back-off Mechanism for Wireless Sensor Networks MAC Protocol in Smart Grid System”, 2015 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), pp. 1-5, Feb. 2015
    [11] M. M. Ahmed and S. M. Sadakatul Bari, “Improved Backoff Algorithm for IEEE 802.15.4 Wireless Sensor Networks”, 2010 IFIP Wireless Days, pp. 1-5, Oct. 2010
    [12] A. Farhad, Y. Zia and F. B. Hussain, "Survey of Dynamic Super-Frame Adjustment Schemes in Beacon-Enabled IEEE 802.15.4 Networks: An Application’s Perspective", Wireless Personal Communications, pp. 119-135, Jun 2016
    [13] B. H. Lee and H. K. Wu, “Study on a Dynamic Superframe Adjustment Algorithm for IEEE 802.15.4 LR-WPAN”, 2010 IEEE 71st Vehicular Technology Conference, pp. 1-5, May. 2010
    [14] Camila H. S. Oliveira, Y. Ghamri-Doudane and S. Lohier, “A Duty Cycle Self-Adaptation Algorithm for the 802.15.4 Wireless Sensor Networks”, Global Information Infrastructure Symposium - GIIS 2013, pp. 1-7, Oct. 2013
    [15] A. Farhad, Y. Zia, S. Farid and F. B. Hussain, “A traffic aware dynamic super-frame adaptation algorithm for the IEEE 802.15.4 based networks”, 2015 IEEE Asia Pacific Conference on Wireless and Mobile (APWiMob), pp. 261-266, Aug. 2015
    [16] C. L. Ho, C. H. Lin, W. S. Hwang and S. M. Chung, “Dynamic GTS Allocation Scheme in IEEE 802.15.4 by Multi-Factor”, 2012 Eighth International Conference on Intelligent Information Hiding and Multimedia Signal Processing, pp. 457-460, Jul 2012
    [17] 張軒豪,「IEEE 802.15.4用於智慧電網家庭區域網路之有效傳輸機制研究」,碩士論文,國立臺灣科技大學,臺北市,2014。
    [18] M. U. Harun Al Rasyid, B. H. Lee and A. Sudarsono, “PEGAS: Partitioned GTS Allocation Scheme for IEEE 802.15.4 Networks”, 2013 International Conference on Computer, Control, Informatics and Its Applications, pp. 29-32, Nov. 2013
    [19] 董勁宏,「在IEEE 802.15.4下智慧電網中家庭區域網路之控制訊號服務品質分析與研究」,碩士論文,國立臺灣科技大學,臺北市,2013。
    [20] CC2530 datasheet, “http://www.ti.com/lit/ds/symlink/cc2530.pdf”

    QR CODE