簡易檢索 / 詳目顯示

研究生: 張家馨
Chia-Hsin Chang
論文名稱: 以溶液剪切法製備之有向性雙炔基分子薄膜─結構分析及其在有機場效電晶體之應用
Preparation of Aligned Diacetylenic Molecular Films via Solution-Shearing Method — The Structure Analysis and Application in the Organic Field-Effect Transistors
指導教授: 陶雨臺
Yu-Tai Tao
黃炳照
Bing-Joe Hwang
口試委員: 陶雨臺
Yu-Tai Tao
黃炳照
Bing-Joe Hwang
陳錦地
Chin-Ti Cheng
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 99
中文關鍵詞: 雙炔基分子溶液剪切製程有機場效電晶體
外文關鍵詞: Diacetylenic compounds, Solution-shearing process, Organic Field-Effect Transistor
相關次數: 點閱:245下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 雙炔基分子在特定結晶結構下可經由紫外光照射進行拓樸化學聚合反應(Topochemical reaction),形成具有共軛聚(烯-炔)骨架結構的聚雙炔高分子,此材料具有良好的光電特性,是為導電高分子,可應用在場效電晶體中。本實驗研究了三個系列含有雙炔基線性羧酸的有向性薄膜的製備,實驗主要包含了三種分子,第一個分子為:C12H25(C≡C)2(CH2)nCOOH,n=7-10,其中改變了雙炔基官能基與末端酸基中間的碳鏈長度;第二個分子為:C12H25(C≡C)2(CH2)n-CONHPh-COOH,n=7-10,不僅改變了雙炔基官能基與末端酸基的碳鏈長度,並在碳鏈後接上氨基苯甲酸官能基,最後一項為:PhC9H18(C≡C)2(CH2)8COOH,此材料為苯環官能基接在碳鏈末端的雙炔基線性羧酸。以溶液剪切製程將配置於溶液中的各類雙炔基分子製備成薄膜,利用單一方向之剪切力影響薄膜中分子排列方向與形貌。以偏振拉曼光譜、原子力顯微鏡、掠入射廣角X光散射等工具,研究薄膜在照光前後的詳細結構。最後將高分子薄膜運用於場效電晶體中的主動層,分析不同分子膜中電極平行與垂直共軛方向的電性差異。


    Diacetylenic compounds, when packed in specific crystalline structure, are known to undergo topochemical polymerization to yield poly(eny-yne) conjugate polymers, which are useful in electronic applications such as transistors. In this work, three series of linear carboxylic acids containing diacetylenic unit, including C12H25(C≡C)2(CH2)nCOOH with n=7-10; C12H25(C≡C)2(CH2)n-CONHPh-COOH with n=7-10; and PhC9H18(C≡C)2(CH2)8COOH, were used to prepare oriented molecular films on silicon surface by solution-shearing method. The shearing force can influence the molecular packing and orientation of the molecules in the films and their UV-polymerization behavior. The detailed structures of the films before and after UV-irradiation were investigated as a function of the spacer chain length between the diacetylene unit and the carboxyl group, by using polarization Raman spectroscopy, AFM, and grazing-incidence wide-angle X-ray scattering. Potential of these films as the conducting channel in field-effect transistor is evaluated.

    目錄 摘要 IV Abstract V 致謝 VI 目錄 VII 圖目錄 X 表目錄 XIV 第一章 緒論 1 1-1 有機場效電晶體 (Organic Field-effect Transistors, OFETs) 1 1-1-1 有機場效電晶體發展史 3 1-1-2 有機場效電晶體結構 6 1-1-3 有機場效電晶體之操作原理 7 1-1-4 有機場效電晶體之重要參數 8 1-2 有機材料導電機制 10 1-2-1 Hopping Mode 11 1-2-2 MTR Mode 11 1-3 有機半導體材料 12 1-3-1 有機小分子 12 1-3-2 共軛導電高分子 (Conductive polymer) 12 1-4 聚雙炔基化合物 (Polydiacetylenes, PDAs) 14 1-4-1 拓樸化學聚合 (Topochemical reaction) 15 1-4-2 各向異性 (Anisotropy) 16 1-4-3 熱致變色 (Thermochromism) 17 1-4-4 奇偶效應 (Odd-even effect) 19 1-5 溶液製程簡介 21 1-5-1 旋轉塗布 (Spin coating) 21 1-5-2 滴落塗布 (Drop casting) 22 1-5-3 區域鑄造 (Zone casting) 22 1-5-4 噴墨印刷 (Ink-jet printing) 23 1-5-5 溶液剪切塗布 (Solution shearing) 24 第二章 研究動機 27 第三章 實驗步驟 28 3-1 實驗藥品 28 3-2 實驗流程 30 3-2-1 矽晶片清洗流程 30 3-2-2 矽晶片表面自組裝薄膜之製備 30 3-3-3 雙炔基化合物薄膜製備及其聚合反應 32 3-3-4 有機場效電晶體之電極製備 33 3-3 儀器設備 34 3-3-1 剪切塗布機 34 3-3-2 偏光顯微鏡 (Polarizing microscope) 35 3-3-3 真空蒸鍍機 (Vacuum deposition) 36 3-3-4 薄膜厚度測量儀 (Alpha step) 38 3-3-5 紫外/可見光光譜儀 (Ultraviolet/visible spectroscopy, UV-Vis) 39 3-3-6 偏振拉曼光譜(Polarization-dependent Raman Spectroscopy) 40 3-3-7 原子力顯微鏡 (Atomic force microscopy, AFM) 41 3-3-8 掠入射廣角X光散射 (Grazing-incidence wide-angle X-ray scattering, GIWAXS) 43 3-3-9 半導體參數分析儀 (Semiconductor parameter analyzer) 44 第四章 結果與討論 45 4-1 12-DA-n-COOH (n=7-10)之薄膜分析 45 摘要 IV Abstract V 致謝 VI 目錄 VII 圖目錄 X 表目錄 XIV 第一章 緒論 1 1-1 有機場效電晶體 (Organic Field-effect Transistors, OFETs) 1 1-1-1 有機場效電晶體發展史 3 1-1-2 有機場效電晶體結構 6 1-1-3 有機場效電晶體之操作原理 7 1-1-4 有機場效電晶體之重要參數 8 1-2 有機材料導電機制 10 1-2-1 Hopping Mode 11 1-2-2 MTR Mode 11 1-3 有機半導體材料 12 1-3-1 有機小分子 12 1-3-2 共軛導電高分子 (Conductive polymer) 12 1-4 聚雙炔基化合物 (Polydiacetylenes, PDAs) 14 1-4-1 拓樸化學聚合 (Topochemical reaction) 15 1-4-2 各向異性 (Anisotropy) 16 1-4-3 熱致變色 (Thermochromism) 17 1-4-4 奇偶效應 (Odd-even effect) 19 1-5 溶液製程簡介 21 1-5-1 旋轉塗布 (Spin coating) 21 1-5-2 滴落塗布 (Drop casting) 22 1-5-3 區域鑄造 (Zone casting) 22 1-5-4 噴墨印刷 (Ink-jet printing) 23 1-5-5 溶液剪切塗布 (Solution shearing) 24 第二章 研究動機 27 第三章 實驗步驟 28 3-1 實驗藥品 28 3-2 實驗流程 30 3-2-1 矽晶片清洗流程 30 3-2-2 矽晶片表面自組裝薄膜之製備 30 3-3-3 雙炔基化合物薄膜製備及其聚合反應 32 3-3-4 有機場效電晶體之電極製備 33 3-3 儀器設備 34 3-3-1 剪切塗布機 34 3-3-2 偏光顯微鏡 (Polarizing microscope) 35 3-3-3 真空蒸鍍機 (Vacuum deposition) 36 3-3-4 薄膜厚度測量儀 (Alpha step) 38 3-3-5 紫外/可見光光譜儀 (Ultraviolet/visible spectroscopy, UV-Vis) 39 3-3-6 偏振拉曼光譜(Polarization-dependent Raman Spectroscopy) 40 3-3-7 原子力顯微鏡 (Atomic force microscopy, AFM) 41 3-3-8 掠入射廣角X光散射 (Grazing-incidence wide-angle X-ray scattering, GIWAXS) 43 3-3-9 半導體參數分析儀 (Semiconductor parameter analyzer) 44 第四章 結果與討論 45 4-1 12-DA-n-COOH (n=7-10)之薄膜分析 45 4-1-1 溶液剪切法參數調整 46 4-1-2 12-DA-n-COOH (n=7-10)薄膜表面形貌分析 50 4-1-3 12-DA-n-COOH (n=7-10)薄膜之分子聚合方向 52 4-1-4 GIWAXS分析12-DA-n-COOH(n=7-10)堆疊結構 54 4-2 12-DA-n-CONHPh-COOH (n=7-10)之薄膜分析 57 4-2-1 12-DA-n-CONHPh-COOH (n=7-10)薄膜表面形貌分析 60 4-2-2 12-DA-n-CONHPh-COOH (n=7-10)薄膜之分子聚合方向 63 4-2-3 GIWAXS分析12-DA-n-CONHPh-COOH(n=7-10)堆疊結構 65 4-3 Ph-9-DA-8-COOH之薄膜分析 68 4-3-1 Ph-9-DA-8-COOH薄膜表面形貌分析 69 4-3-2 Ph-9-DA-8-COOH薄膜之分子聚合方向 70 4-3-3 GIWAXS分析Ph-9-DA-8-COOH堆疊結構 72 4-4 高分子薄膜應用於有機場效電晶體之電性分析 75 第五章 結論 79 參考文獻 81 圖目錄 圖1- 1 有機場效電晶體應用於可撓式顯示屏[2]。 2 圖1- 2 1983年於國際期刊發表之第一個有機薄膜電晶體電性圖[5]。 3 圖1- 3 1988年A. ASSAD等人以P3HT製備OFET元件結構與電性曲線圖[7]。 4 圖1- 4 2005年,J. Y. LEE將聚雙炔用於主動層之電晶體電導率有各向異性[9]。 4 圖1- 5 自組裝混合肽之有機場效電晶體具有高載子遷移率及好的穩定性[10]。 5 圖1- 6 不同種類有機場效電晶體結構示意圖。 6 圖1- 7 有機場效電晶體操作模式示意圖。 7 圖1- 8 OFET元件參數示意圖[11]。 9 圖1- 9 偏極子和雙偏極子所產生之能階變化[12]。 10 圖1- 10 常見導電有機材料。 13 圖1- 11 POLY(1,6-BISHYDROXY HEXA-2,4-DIACETYLENE)高分子結構[22]。 14 圖1- 12 拓樸化學聚合之雙炔基分子排列條件。 15 圖1- 13 雙炔分子經由照光後發生拓樸聚合反應,而得聚雙炔高分子[26]。 15 圖1- 14 平行於PDAS主鏈之光電流載子量較垂直方向高兩個數量級[34]。 16 圖1- 15 PDAS經過照光聚合以及加熱後的顏色變化[37]。 17 圖1- 16 可見光-紫外光吸收光譜中PDAS在不同顏色下會有不同的吸收波長[38]。 18 圖1- 17 PDAS在不同顏色下的結構變化[38]。 18 圖1- 18 利用真空蒸鍍法製備不同碳鏈之12-DA-N-COOH (N=7-11)薄膜,其分子自組裝排列之表面形貌[40]。 19 圖1- 19 利用真空蒸鍍法製備不同碳鏈之12-DA-N-CONHPH-COOH (N=7-11)薄膜,其分子自組裝排列之表面形貌[40]。 20 圖1- 1 有機場效電晶體應用於可撓式顯示屏[2]。 2 圖1- 2 1983年於國際期刊發表之第一個有機薄膜電晶體電性圖[5]。 3 圖1- 3 1988年A. ASSAD等人以P3HT製備OFET元件結構與電性曲線圖[7]。 4 圖1- 4 2005年,J. Y. LEE將聚雙炔用於主動層之電晶體電導率有各向異性[9]。 4 圖1- 5 自組裝混合肽之有機場效電晶體具有高載子遷移率及好的穩定性[10]。 5 圖1- 6 不同種類有機場效電晶體結構示意圖。 6 圖1- 7 有機場效電晶體操作模式示意圖。 7 圖1- 8 OFET元件參數示意圖[11]。 9 圖1- 9 偏極子和雙偏極子所產生之能階變化[12]。 10 圖1- 10 常見導電有機材料。 13 圖1- 11 POLY(1,6-BISHYDROXY HEXA-2,4-DIACETYLENE)高分子結構[22]。 14 圖1- 12 拓樸化學聚合之雙炔基分子排列條件。 15 圖1- 13 雙炔分子經由照光後發生拓樸聚合反應,而得聚雙炔高分子[26]。 15 圖1- 14 平行於PDAS主鏈之光電流載子量較垂直方向高兩個數量級[34]。 16 圖1- 15 PDAS經過照光聚合以及加熱後的顏色變化[37]。 17 圖1- 16 可見光-紫外光吸收光譜中PDAS在不同顏色下會有不同的吸收波長[38]。 18 圖1- 17 PDAS在不同顏色下的結構變化[38]。 18 圖1- 18 利用真空蒸鍍法製備不同碳鏈之12-DA-N-COOH (N=7-11)薄膜,其分子自組裝排列之表面形貌[40]。 19 圖1- 19 利用真空蒸鍍法製備不同碳鏈之12-DA-N-CONHPH-COOH (N=7-11)薄膜,其分子自組裝排列之表面形貌[40]。 20 圖1- 20 利用真空蒸鍍法製備不同碳鏈之PH-9-DA-N-COOH (N=7、8)薄膜,其分子自組裝排列之表面形貌[40]。 20 圖1- 21 左圖為SPIN-COATING右圖為SHEARING製程。(A, B, E, F)為DCB溶劑,(E, D, G, H)為TOLUENE溶劑配置之溶液。 21 圖1- 22 滴落塗布製程示意圖[42]。 22 圖1- 23 區域鑄造製成示意圖[43]。 23 圖1- 24 噴墨印刷示意圖。 23 圖1- 25 溶液剪切塗布法中刮刀速率對薄膜特性的影響[45]。 24 圖1- 26 馬倫哥尼效應示意圖。 25 圖1- 27 溶液剪切法示意圖[46]。 25 圖3- 1 剪切塗布示意圖。 34 圖3- 2 偏光顯微鏡。 35 圖3- 3 偏光顯微鏡原理示意圖。 36 圖3- 4 真空蒸鍍機。 37 圖3- 5 電阻式蒸鍍原理示意圖。 37 圖3- 6 電子束蒸鍍原理示意圖。 38 圖3- 7 薄膜厚度測量儀。 38 圖3- 8 電荷轉移示意圖。 39 圖3- 9 紫外/可見光光譜儀。 40 圖3- 10 拉曼光譜儀原理示意圖。 40 圖3- 11 原子力顯微鏡原理。 42 圖3- 12 不同操作模式之AFM。 42 圖3- 13 同步GISAXS/GIWAXS實驗示意圖。 43 圖3- 14 半導體參數分析儀。 44 圖4- 1 12-DA-N-COOH (N=7-10)分子結構示意圖。 45 圖4- 2 12-DA-N-COOH (N=7-10)UV-VIS圖譜,分析不同照光時間的變化,以找出最佳照光時間。 46 圖4- 3 12-DA-8-COOH在不同基板溫度及塗佈速度下的表面形貌。 47 圖4- 4 12-DA-8-COOH在固定速率0.1 MM/S下,不同基板溫度的表面形貌。 48 圖4- 5 在不同基板溫度及塗佈速率下的薄膜厚度變化。 49 圖4- 6 12-DA-N-COOH (N=7-10)聚合前的OM/POM。 50 圖4- 7 12-DA-N-COOH (N=7-10)聚合後的OM/POM。 51 圖4- 8 聚合後12-DA-N-COOH (N=7-10) 薄膜AFM圖。 51 圖4- 9 12-DA-N-COOH(N=7-10) 偏光UV-VIS圖譜,分析不同角度的峰值強度,以得知分子聚合方向。 52 圖4- 10 12-DA-N-COOH (N=7-10)的偏振拉曼光譜。 53 圖4- 11 12-DA-N-COOH (N=7-10) 的2D-GIWAXS圖譜。 55 圖4- 12 12-DA-N-COOH (N=7-10) 一維繞射圖。(A)為OUT-OF-PLANE (QZ)面向,(B, C)為IN-PLANE (QXY)面向。 55 圖4- 13 12-DA-N-COOH (N=7-10)分子排列示意圖[40]。 56 圖4- 14 12-DA-N-CONHPH-COOH (N=7-10)分子結構示意圖。 57 圖4- 15 12-DA-N-CONHPH-COOH (N=7-10)UV-VIS圖譜,分析不同照光時間的變化,以找出最佳照光時間。 58 圖4- 16 12-DA-N-CONHPH-COOH (N=8、9)照射不同時間的UV-VIS圖譜。 59 圖4- 17 12-DA-N-CONHPH-COOH (N=8、9)照射不同時間的薄膜變化。 59 圖4- 18 12-DA-N-CONHPH-COOH (N=7-10)聚合前的OM/POM。 61 圖4- 19 12-DA-N-CONHPH-COOH (N=7-10)聚合後的OM/POM。 61 圖4- 20 聚合後的12-DA-N-CONHPH-COOH (N=7-10) 薄膜AFM圖。 62 圖4- 21 12-DA-N-CONHPH-COOH(N=7-10) 偏光UV-VIS圖譜,分析不同角度的峰值強度,以得知分子聚合方向。 63 圖4- 21 12-DA-N-CONHPH-COOH(N=7-10) 偏光UV-VIS圖譜,分析不同角度的峰值強度,以得知分子聚合方向。 63 圖4- 22 12-DA-N-CONHPH-COOH (N=7-10)的偏振拉曼光譜。 64 圖4- 23 12-DA-N-CONHPH-COOH (N=7-10) 2D-GIWAXS圖。 66 圖4- 24 、12-DA-N-CONHPH-COOH (N=7-10)一維繞射圖。 66 圖4- 25 12-DA-N-CONHPH-COOH (N=7-10)分子排列示意圖。 67 圖4- 26 PH-9-DA-8-COOH分子結構示意圖。 68 圖4- 27 PH-9-DA-8-COOH UV-VIS圖譜,分析不同照光時間的變化,找出最佳照光時間。 68 圖4- 28 PH-9-DA-8-COOH聚合前的OM(上)/POM(下)。 69 圖4- 29 PH-9-DA-8-COOH聚合後的OM(上)/POM(下)。 69 圖4- 30 PH-9-DA-8-COOH 偏光UV-VIS圖譜,分析不同角度的峰值強度,以得知分子聚合方向。 70 圖4- 31 不同溶劑製備的PH-9-DA-8-COOH高分子薄膜偏振拉曼光譜。 71 圖4- 32 PH-9-DA-8-COOH 2D-GIWAXS圖。 73 圖4- 33 不同溶劑製備的PH-9-DA-8-COOH高分子薄膜一維繞射圖。 73 圖4- 34 PH-9-DA-8-COOH分子排列示意圖。 74 圖4- 35 (A, B)為電極平行與垂直共軛主鏈走向之有機場效電晶體結構示意圖,(C)傳導通道之長與寬比例圖,長(L)為20 M,寬(W)為60 M。 75 圖4- 36 12-DA-9-COOH 作為電晶體主動層之電性分析,(A, C)為ID - VG曲線圖,(B, D)為ID - VD曲線圖。 76 圖4- 37 12-DA-9-CONHPH-COOH 作為電晶體主動層之電性分析,(A, C)為ID - VG曲線圖,(B, D)為ID - VD曲線圖。 77 表目錄 表1- 1 有機薄膜電晶體與無機薄膜電晶體之比較。 2 表1- 2 溶液製程優缺點比較。 26 表3- 1實驗所需化學藥品。 28 表3- 2 不同加熱源蒸鍍法優缺點比較。 36 表3- 3 電荷轉移種類。 39 表4- 1 12-DA-8-COOH在不同基板溫度及塗佈速率下薄膜的厚度變化。 49 表4- 2 SPARTAN軟體計算之12-DA-N-COOH (N=7-10)分子/二聚體長度。 56 表4- 3 GIWAXS數據之12-DA-N-COOH (N=7-10) D(200)和D(002)距離。 56 表4- 4 SPARTAN軟體計算之12-DA-N-CONHPH-COOH (N=7-10)分子/二聚體長度。 67 表4- 5 GIWAXS數據之12-DA-N-CONHPH-COOH (N=7-10) D(200)、D(002)和D(010)距離。 67 表4- 6 SPARTAN軟體計算之PH-9-DA-8-COOH分子/二聚體長度。 74 表4- 7 GIWAXS數據之不同溶劑製備PH-9-DA-8-COOH D(200)和D(002)距離。 74 表4- 8 12-DA-9-COOH與12-DA-9-CONHPH-COOH電性分析比較。 78

    1. 維基百科編者. “電晶體”.
    2. 維基百科編者. “有機場效應電晶體”.
    3. Jackson, T.N., et al., Organic thin-film transistors for organic light-emitting flat-panel display backplanes. IEEE Journal of selected topics in quantum electronics, 1998. 4(1): p. 100-104.
    4. Steudel, S., et al., Comparison of organic diode structures regarding high-frequency rectification behavior in radio-frequency identification tags. Journal of applied physics, 2006. 99(11): p. 114519.
    5. Ebisawa, F., T. Kurokawa, and S. Nara, Electrical properties of polyacetylene/polysiloxane interface. Journal of applied physics, 1983. 54(6): p. 3255-3259.
    6. Tsumura, A., H. Koezuka, and T. Ando, Macromolecular electronic device: Field‐effect transistor with a polythiophene thin film. Applied Physics Letters, 1986. 49(18): p. 1210-1212.
    7. Assadi, A., et al., Field‐effect mobility of poly (3‐hexylthiophene). Applied Physics Letters, 1988. 53(3): p. 195-197.
    8. Garnier, F., et al., An all‐organic" soft" thin film transistor with very high carrier mobility. Advanced Materials, 1990. 2(12): p. 592-594.
    9. Lee, J., et al., Field-effect mobility anisotropy in PDA-PTS single crystals. Synthetic metals, 2005. 152(1-3): p. 169-172.
    10. Dhawan, S., et al., Organic field effect transistors based on self-assembling core-modified peptidic polymers. Molecular Systems Design & Engineering, 2020. 5(4): p. 847-855.
    11. Guo, Y.-l., High Performance Ambipolar Polymer Semiconductors and Transistors. ACTA POLYMERICA SINICA, 2020. 51(5): p. 448-456.
    12. Alakhras, F., In situ UV/VIS Spectroscopy of Electrochemically Synthesized Selenophene Thiophene Copolymers. Helvetica Chimica Acta, 2015. 98(6): p. 851-862.
    13. Gajdos, F., et al., On the inapplicability of electron-hopping models for the organic semiconductor phenyl-C61-butyric acid methyl ester (PCBM). The journal of physical chemistry letters, 2013. 4(6): p. 1012-1017.
    14. Watson, P.K., The transport and trapping of electrons in polymers. IEEE transactions on Dielectrics and Electrical Insulation, 1995. 2(5): p. 915-924.
    15. Shirakawa, H., et al., Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene,(CH) x. Journal of the Chemical Society, Chemical Communications, 1977(16): p. 578-580.
    16. Turkoglu, G., M.E. Cinar, and T. Ozturk, Thiophene-based organic semiconductors. Sulfur Chemistry, 2019: p. 79-123.
    17. Panzer, M.J., C.R. Newman, and C.D. Frisbie, Low-voltage operation of a pentacene field-effect transistor with a polymer electrolyte gate dielectric. Applied Physics Letters, 2005. 86(10): p. 103503.
    18. Ahmed, R., et al., Air stability of C60 based n-type OFETs. Synthetic metals, 2014. 188: p. 136-139.
    19. Li, R., et al., Synthesis, characterization, and OFET properties of amphiphilic heteroleptic tris (phthalocyaninato) europium (III) complexes with hydrophilic poly (oxyethylene) substituents. Inorganic chemistry, 2007. 46(26): p. 11397-11404.
    20. Yi, H., et al., Vacuum Lamination Approach to Fabrication of High‐Performance Single‐Crystal Organic Field‐Effect Transistors. Advanced materials, 2011. 23(48): p. 5807-5811.
    21. Burroughes, J., C. Jones, and R. Friend, New semiconductor device physics in polymer diodes and transistors. Nature, 1988. 335(6186): p. 137-141.
    22. Wegner, G., Topochemische Reaktionen von Monomeren mit konjugierten Dreifachbindungen/Tochemical Reactions of Monomers with conjugated triple Bonds: I. Mitt.: Polymerisation von Derivaten des 2.4-Hexadiin-1.6-diols im kristallinen Zustand. Zeitschrift für Naturforschung B, 1969. 24(7): p. 824-832.
    23. Baughman, R., Solid‐state polymerization of diacetylenes. Journal of Applied Physics, 1972. 43(11): p. 4362-4370.
    24. Schermann, W. and G. Wegner, Topochemische Reaktionen von Monomeren mit konjugierten Dreifachbindungen, 10. Elektrische Leitfähigkeit von Einkristallen aus Polydiacetylenen. Die Makromolekulare Chemie: Macromolecular Chemistry and Physics, 1974. 175(2): p. 667-674.
    25. Kim, Y., et al., Pressure-Induced Transition of Bisamide-Substituted Diacetylene Crystals from Nonphotopolymerizable to Photopolymerizable State. ACS applied materials & interfaces, 2018. 10(42): p. 36407-36414.
    26. Enkelmann, V., Structural aspects of the topochemical polymerization of diacetylenes. Polydiacetylenes, 1984: p. 91-136.
    27. Mortazavian, S. and A. Fatemi, Effects of fiber orientation and anisotropy on tensile strength and elastic modulus of short fiber reinforced polymer composites. Composites part B: engineering, 2015. 72: p. 116-129.
    28. Luo, Z., et al., Anisotropic in-plane thermal conductivity observed in few-layer black phosphorus. Nature communications, 2015. 6(1): p. 1-8.
    29. Li, Z. and R. Bradt, Thermal expansion and thermal expansion anisotropy of SiC polytypes. Journal of the American Ceramic Society, 1987. 70(7): p. 445-448.
    30. Poe, B.T., et al., Electrical conductivity anisotropy of dry and hydrous olivine at 8 GPa. Physics of the Earth and Planetary Interiors, 2010. 181(3-4): p. 103-111.
    31. Borradaile, G. and B. Henry, Tectonic applications of magnetic susceptibility and its anisotropy. Earth-Science Reviews, 1997. 42(1-2): p. 49-93.
    32. Samoc, A., et al., Refractive‐index anisotropy and optical dispersion in films of deoxyribonucleic acid. Journal of applied polymer science, 2007. 105(1): p. 236-245.
    33. Hoofman, R.J., et al., Anisotropy of the charge-carrier mobility in polydiacetylene crystals. The Journal of chemical physics, 1998. 109(5): p. 1885-1893.
    34. Lochner, K., B. Reimer, and H. Bässler, Anisotropy of electrical properties of a polydiacetylene single crystal. Chemical Physics Letters, 1976. 41(2): p. 388-390.
    35. Bleier, H., et al., Photoconductivity in trans-polyacetylene: Transport and recombination of photogenerated charged excitations. Physical Review B, 1988. 38(9): p. 6031.
    36. Mergu, N., et al., A simple and fast responsive colorimetric moisture sensor based on symmetrical conjugated polymer. Sensors and Actuators B: Chemical, 2020. 311: p. 127906.
    37. Kim, M.J., et al., Tuning of the topochemical polymerization of diacetylenes based on an odd/even effect of the peripheral alkyl chain: thermochromic reversibility in a thin film and a single-component ink for a fountain pen. ACS applied materials & interfaces, 2018. 10(29): p. 24767-24775.
    38. Burns, A., et al., Shear-induced mechanochromism in polydiacetylene monolayers. Tribology Letters, 2001. 10(1): p. 89-96.
    39. Wenz, G., et al., Structure of poly (diacetylenes) in solution. Macromolecules, 1984. 17(4): p. 837-850.
    40. Tseng, C.W., et al., Self‐Assembly Behavior of Diacetylenic Acid Molecules upon Vapor Deposition: Odd–Even Effect on the Film Morphology. Chemistry–A European Journal, 2020. 26(61): p. 13948-13956.
    41. Lee, J.-H., et al., Solvent-dependent performance of solution-processed small-molecule organic field-effect transistors. Organic Electronics, 2018. 52: p. 184-189.
    1. 維基百科編者. “電晶體”.
    2. 維基百科編者. “有機場效應電晶體”.
    3. Jackson, T.N., et al., Organic thin-film transistors for organic light-emitting flat-panel display backplanes. IEEE Journal of selected topics in quantum electronics, 1998. 4(1): p. 100-104.
    4. Steudel, S., et al., Comparison of organic diode structures regarding high-frequency rectification behavior in radio-frequency identification tags. Journal of applied physics, 2006. 99(11): p. 114519.
    5. Ebisawa, F., T. Kurokawa, and S. Nara, Electrical properties of polyacetylene/polysiloxane interface. Journal of applied physics, 1983. 54(6): p. 3255-3259.
    6. Tsumura, A., H. Koezuka, and T. Ando, Macromolecular electronic device: Field‐effect transistor with a polythiophene thin film. Applied Physics Letters, 1986. 49(18): p. 1210-1212.
    7. Assadi, A., et al., Field‐effect mobility of poly (3‐hexylthiophene). Applied Physics Letters, 1988. 53(3): p. 195-197.
    8. Garnier, F., et al., An all‐organic" soft" thin film transistor with very high carrier mobility. Advanced Materials, 1990. 2(12): p. 592-594.
    9. Lee, J., et al., Field-effect mobility anisotropy in PDA-PTS single crystals. Synthetic metals, 2005. 152(1-3): p. 169-172.
    10. Dhawan, S., et al., Organic field effect transistors based on self-assembling core-modified peptidic polymers. Molecular Systems Design & Engineering, 2020. 5(4): p. 847-855.
    11. Guo, Y.-l., High Performance Ambipolar Polymer Semiconductors and Transistors. ACTA POLYMERICA SINICA, 2020. 51(5): p. 448-456.
    12. Alakhras, F., In situ UV/VIS Spectroscopy of Electrochemically Synthesized Selenophene Thiophene Copolymers. Helvetica Chimica Acta, 2015. 98(6): p. 851-862.
    13. Gajdos, F., et al., On the inapplicability of electron-hopping models for the organic semiconductor phenyl-C61-butyric acid methyl ester (PCBM). The journal of physical chemistry letters, 2013. 4(6): p. 1012-1017.
    14. Watson, P.K., The transport and trapping of electrons in polymers. IEEE transactions on Dielectrics and Electrical Insulation, 1995. 2(5): p. 915-924.
    15. Shirakawa, H., et al., Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene,(CH) x. Journal of the Chemical Society, Chemical Communications, 1977(16): p. 578-580.
    16. Turkoglu, G., M.E. Cinar, and T. Ozturk, Thiophene-based organic semiconductors. Sulfur Chemistry, 2019: p. 79-123.
    17. Panzer, M.J., C.R. Newman, and C.D. Frisbie, Low-voltage operation of a pentacene field-effect transistor with a polymer electrolyte gate dielectric. Applied Physics Letters, 2005. 86(10): p. 103503.
    18. Ahmed, R., et al., Air stability of C60 based n-type OFETs. Synthetic metals, 2014. 188: p. 136-139.
    19. Li, R., et al., Synthesis, characterization, and OFET properties of amphiphilic heteroleptic tris (phthalocyaninato) europium (III) complexes with hydrophilic poly (oxyethylene) substituents. Inorganic chemistry, 2007. 46(26): p. 11397-11404.
    20. Yi, H., et al., Vacuum Lamination Approach to Fabrication of High‐Performance Single‐Crystal Organic Field‐Effect Transistors. Advanced materials, 2011. 23(48): p. 5807-5811.
    21. Burroughes, J., C. Jones, and R. Friend, New semiconductor device physics in polymer diodes and transistors. Nature, 1988. 335(6186): p. 137-141.
    22. Wegner, G., Topochemische Reaktionen von Monomeren mit konjugierten Dreifachbindungen/Tochemical Reactions of Monomers with conjugated triple Bonds: I. Mitt.: Polymerisation von Derivaten des 2.4-Hexadiin-1.6-diols im kristallinen Zustand. Zeitschrift für Naturforschung B, 1969. 24(7): p. 824-832.
    23. Baughman, R., Solid‐state polymerization of diacetylenes. Journal of Applied Physics, 1972. 43(11): p. 4362-4370.
    24. Schermann, W. and G. Wegner, Topochemische Reaktionen von Monomeren mit konjugierten Dreifachbindungen, 10. Elektrische Leitfähigkeit von Einkristallen aus Polydiacetylenen. Die Makromolekulare Chemie: Macromolecular Chemistry and Physics, 1974. 175(2): p. 667-674.
    25. Kim, Y., et al., Pressure-Induced Transition of Bisamide-Substituted Diacetylene Crystals from Nonphotopolymerizable to Photopolymerizable State. ACS applied materials & interfaces, 2018. 10(42): p. 36407-36414.
    26. Enkelmann, V., Structural aspects of the topochemical polymerization of diacetylenes. Polydiacetylenes, 1984: p. 91-136.
    27. Mortazavian, S. and A. Fatemi, Effects of fiber orientation and anisotropy on tensile strength and elastic modulus of short fiber reinforced polymer composites. Composites part B: engineering, 2015. 72: p. 116-129.
    28. Luo, Z., et al., Anisotropic in-plane thermal conductivity observed in few-layer black phosphorus. Nature communications, 2015. 6(1): p. 1-8.
    29. Li, Z. and R. Bradt, Thermal expansion and thermal expansion anisotropy of SiC polytypes. Journal of the American Ceramic Society, 1987. 70(7): p. 445-448.
    30. Poe, B.T., et al., Electrical conductivity anisotropy of dry and hydrous olivine at 8 GPa. Physics of the Earth and Planetary Interiors, 2010. 181(3-4): p. 103-111.
    31. Borradaile, G. and B. Henry, Tectonic applications of magnetic susceptibility and its anisotropy. Earth-Science Reviews, 1997. 42(1-2): p. 49-93.
    32. Samoc, A., et al., Refractive‐index anisotropy and optical dispersion in films of deoxyribonucleic acid. Journal of applied polymer science, 2007. 105(1): p. 236-245.
    33. Hoofman, R.J., et al., Anisotropy of the charge-carrier mobility in polydiacetylene crystals. The Journal of chemical physics, 1998. 109(5): p. 1885-1893.
    34. Lochner, K., B. Reimer, and H. Bässler, Anisotropy of electrical properties of a polydiacetylene single crystal. Chemical Physics Letters, 1976. 41(2): p. 388-390.
    35. Bleier, H., et al., Photoconductivity in trans-polyacetylene: Transport and recombination of photogenerated charged excitations. Physical Review B, 1988. 38(9): p. 6031.
    36. Mergu, N., et al., A simple and fast responsive colorimetric moisture sensor based on symmetrical conjugated polymer. Sensors and Actuators B: Chemical, 2020. 311: p. 127906.
    37. Kim, M.J., et al., Tuning of the topochemical polymerization of diacetylenes based on an odd/even effect of the peripheral alkyl chain: thermochromic reversibility in a thin film and a single-component ink for a fountain pen. ACS applied materials & interfaces, 2018. 10(29): p. 24767-24775.
    38. Burns, A., et al., Shear-induced mechanochromism in polydiacetylene monolayers. Tribology Letters, 2001. 10(1): p. 89-96.
    39. Wenz, G., et al., Structure of poly (diacetylenes) in solution. Macromolecules, 1984. 17(4): p. 837-850.
    40. Tseng, C.W., et al., Self‐Assembly Behavior of Diacetylenic Acid Molecules upon Vapor Deposition: Odd–Even Effect on the Film Morphology. Chemistry–A European Journal, 2020. 26(61): p. 13948-13956.
    41. Lee, J.-H., et al., Solvent-dependent performance of solution-processed small-molecule organic field-effect transistors. Organic Electronics, 2018. 52: p. 184-189.
    42. Wu, X., et al., Preparation of Bi-based photocatalysts in the form of powdered particles and thin films: a review. Journal of Materials Chemistry A, 2020. 8(31): p. 15302-15318.
    43. Tracz, A., T. Pakula, and J.K. Jeszka, Zone casting-a universal method of preparing oriented anisotropic layers of organic materials. Materials Science-Poland, 2004. 22(4): p. 415-421.
    44. Singh, M., et al., Inkjet printing—process and its applications. Advanced materials, 2010. 22(6): p. 673-685.
    45. Galindo, S., et al., Control of Polymorphism and Morphology in Solution Sheared Organic Field‐Effect Transistors. Advanced Functional Materials, 2017. 27(25): p. 1700526.
    46. Xu, J., et al., Probing the interfacial molecular packing in TIPS-pentacene organic semiconductors by surface enhanced Raman scattering. Journal of Materials Chemistry C, 2014. 2(16): p. 2985-2991.

    QR CODE