簡易檢索 / 詳目顯示

研究生: 莊瑋立
Wei-Li Chuang
論文名稱: 製備光交聯水泥/幾丁聚醣奈米纖維 並應用於骨組織再生
Preparation of Cement-Chitosan Electrospun Nanofibrous Scaffolds for Bone Tissue Engineering
指導教授: 何明樺
Ming-Hua Ho
口試委員: 胡孝光
Shiaw-Guang Hu
謝學真
Hsyue-Jen Hsieh
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 121
中文關鍵詞: 光交聯奈米纖維水泥幾丁聚醣
外文關鍵詞: Photo-crosslinking, Nanofiber, Cement, Chitosan
相關次數: 點閱:377下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在這項研究中,我們通過模擬人骨骼的細胞外基質(Extracellular matrix, ECM)將有機相的幾丁聚醣和作為無機相的水泥合併,成為生物活性支架,並成功製備了均勻的水泥/幾丁聚醣奈米纖維,並優化了靜電紡絲過程中的主要參數,包括相對濕度、水泥濃度以及黏度,可獲得直徑約250 nm的均勻的幾丁聚醣-水泥奈米纖維。通過添加水泥,改善了幾丁聚醣的電紡絲性能。
為了提高水泥奈米纖維的穩定性,加入四乙二醇二丙烯酸酯(TTEGDA)和2,2-二甲氧基-2-苯基苯乙酮(DMPA)被用以作為光交聯劑與光起始劑,配合了紫外光的電紡絲設備,可實現一步光交聯(One-step photo-crosslinking)。通過使用本研究提出的光交聯方法並使用合適的交聯劑濃度和照射能量,可以連續有效地製備高穩定性的奈米纖維,在水性環境中也能使奈米纖維的網絡結構保持完整,且奈米纖維的形態在光交聯後沒有被改變。
本研究中,我們確認了水泥/幾丁聚醣奈米纖維的酸鹼值的變化,並不會像單純水泥一樣急速上升,表示通過本研究製成的複合材料,可以使酸鹼值的變化較緩和,使細胞較不受傷害。
藉由骨細胞的培養,本研究證實加入水泥可以增加骨母細胞的貼附性以及活性。這可能是因為矽酸鈣可以促進磷酸鈣沈積層的生成,使生物相容性提高。通過添加水泥也可以促進成骨母細胞鹼性磷酸酶(Alkaline phosphatase, ALP)、骨橋蛋白(Osteopontin, OPN)與生物礦化(Biomineralization)的表現,證實了加入水泥能增進細胞的骨分化的能力。本研究顯示對於骨組織,水泥/幾丁聚醣奈米纖維是個具有潛力的生醫材料。


In this research , chitosan as an organic phase and cement as an in-organic phase were combined by electrospinning as bioactive scaffolds. The composition was designed by mimicking the structure of extracel-lular matrix (ECM) of nature human bones. The main parameters in the electrospinning process, including relative humidity, cement concentra-tion and viscosity, were optimized to obtain uniform chitosan-cement nanofibers with the diameter about 250 nm. With the addition of cement, the electrospinnability of chitosan was improved. To enhance the stability of cement nanofibers, photo-crosslinking was applied with the addition of tetra-ethyleneglycol diacrylate (TTEGDA) and 2,2 dimethoxy-2-phenylacetophenone (DMPA), where the UV irra-diation was incorporated with electrospinning and thus a one-step cross-linking was achieved. By using the photo-crosslinking process proposed in this research, nanofibers with high stability were produced continu-ously and efficiently. With suitable crosslinker concentrations and irradi-ation energy, the swelling degree of electrospun fibers greatly decreased, keeping network structures of nanofibers in aqueous environment. More important, the morphology of nanofibers was not changed due to the photo-crosslinking.
Compared with using only cement as cell culture substrates, chi-tosan/cement did not change pH value and temperature significantly in aqueous solution. This would be one of the reason that the composite nanofibers prepared in this study showed high biocompatibility.
From the culture of osteogenic cells on nanofibers, adding cement promoted the adhesion and viability of osteoblasts. This was possibly because calcium silicate induced the formation of calcium phosphate deposition on nanofibers, which was highly bioactive to osteogenic cells. The osteogenic differentiation in early, middle and late stage were en-couraged by the addition of cement on nanofibrous substrates, revealed by the expression of ALPase, OPN and biomineralization. In this re-search, uniform and stable cement/chitosan composite nanofibers were synthesized and proved to be a promising biomaterial for the bone re-generation.

摘要 I ABSTRACT III 致謝 V 目錄 VI 表目錄 X 圖目錄 XI 方程式目錄 XV 專有名詞及縮寫 XVI 第一章、 緒論 1 第二章、 文獻回顧 3 2.1 生醫材料 3 2.1.1 骨科材料 3 2.1.2 有機/無機複合材料 4 2.2 水泥 6 2.2.1 水泥應用於生醫領域 6 2.2.2 水泥的水合反應 7 2.2.3 水泥水合反應後的產物的生醫用途 8 2.3 幾丁聚醣 9 2.3.1 幾丁聚醣的去乙醯度以及溶解度 10 2.3.2 分子量 11 2.3.3 幾丁聚醣於生醫領域上之應用 11 2.4 支架 13 2.4.1 有機/無機材料應用於支架 13 2.5 奈米纖維 15 2.5.1 電紡絲製程 15 2.5.2 電紡絲的機制 16 2.5.3 影響電紡絲的參數 17 2.5.4 幾丁聚醣奈米纖維 18 2.5.5 複合式幾丁聚醣奈米纖維應用於組織工程 19 2.6 交聯幾丁聚醣奈米纖維 20 2.6.1 戊二醛(Glutaraldehyde, GA)交聯 20 2.6.2 京尼平(Genipin)交聯 20 2.6.3 光交聯 21 第三章、 實驗材料與方法 25 3.1 實驗藥品 25 3.2 實驗儀器 27 3.3 光交聯水泥/幾丁聚醣奈米纖維的製備 29 3.3.1 水泥/幾丁聚醣奈米纖維的製備 29 3.3.2 光交聯水泥/幾丁聚醣奈米纖維的製備 30 3.4 材料物化性分析 31 3.4.1 中和反應 31 3.4.2 電子掃描顯微鏡 32 3.4.3 能量色散X光譜儀 32 3.4.4 黏度測定 33 3.4.5 FTIR傅立葉紅外線光譜儀 33 3.4.6 浸泡實驗 34 3.4.7 pH值測定 34 3.5 體外細胞實驗 35 3.5.1 細胞培養 36 3.5.2 細胞冷凍保存 36 3.5.3 解凍培養 37 3.5.4 細胞計數 37 3.5.5 粒線體活性測試 38 3.5.6 細胞染色(Immunocytochemical staining) 39 3.5.7 鹼性磷酸酶測試 40 3.5.8 蛋白質濃度測定 40 3.5.9 電顯觀察前之細胞樣本前處理方式 41 3.5.10 Von Kossa染色 42 3.6 統計分析 43 第四章、 結果與討論 44 4.1 電紡絲系統的參數 44 4.1.1 濕度的影響 44 4.1.2 水泥濃度的影響 48 4.2 光交聯奈米纖維 53 4.2.1 可能的光交聯反應式 53 4.2.2 TTEGDA濃度的影響 53 4.2.3 光交聯能量的影響 61 4.3 物理性質測試 66 4.3.1 水泥的XRD圖 66 4.3.2 pH值的變化 67 4.3.3 水泥/幾丁聚醣奈米纖維的接觸角測試 69 4.4 光交聯水泥/幾丁聚醣奈米纖維之生物相容性 71 4.4.1 光交聯水泥/幾丁聚醣奈米纖維之細胞貼附 71 4.4.2 光交聯水泥/幾丁聚醣奈米纖維之細胞活性 77 4.4.3 水泥/幾丁聚醣奈米纖維之鹼性磷酸酶表現(ALP) 80 4.4.4 水泥/幾丁聚醣奈米纖維之OPN表現 82 4.4.5 水泥/幾丁聚醣奈米纖維之礦化表現(Von Kossa staining) 85 4.4.6 水泥/幾丁聚醣奈米纖維之鈣、磷含量 88 第五章、 結論 92 REFERENCE 93

1. Pizzoferrato, A., E. Cenni, G. Ciapetti, D. Granchi, L. Savarino, and S. Stea, Inflammatory response to metals and ceramics, in Integrated biomaterials science. 2002, Springer. p. 735-791.
2. Shams-Nateri, A., Modeling light reflection from polyacrylonitrile nanofiber. Journal of Computational and Theoretical Nanoscience, 2010. 7(2): p. 418-422.
3. Ignatova, M., N. Manolova, and I. Rashkov, Novel antibacterial fibers of quaternized chitosan and poly (vinyl pyrrolidone) prepared by electrospinning. European Polymer Journal, 2007. 43(4): p. 1112-1122.
4. Schiffman, J.D. and C.L. Schauer, One-step electrospinning of cross-linked chitosan fibers. Biomacromolecules, 2007. 8(9): p. 2665-2667.
5. Ignatova, M., K. Starbova, N. Markova, N. Manolova, and I. Rashkov, Electrospun nano-fibre mats with antibacterial properties from quaternised chitosan and poly (vinyl alcohol). Carbohydrate Research, 2006. 341(12): p. 2098-2107.
6. Camilleri, J., F. Montesin, S. Papaioannou, F. McDonald, and T. Pitt Ford, Biocompatibility of two commercial forms of mineral trioxide aggregate. International Endodontic Journal, 2004. 37(10): p. 699-704.
7. Shie, M.Y., W.H. Chiang, I.W.P. Chen, W.Y. Liu, and Y.W. Chen, Synergistic acceleration in the osteogenic and angiogenic differentiation of human mesenchymal stem cells by calcium silicate–graphene composites. Materials Science and Engineering: C, 2017. 73: p. 726-735.
8. Huang, T.H., S.J. Ding, and C.T. Kao, Biocompatibility of various formula root filling materials for primary teeth. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2007. 80(2): p. 486-490.
9. Ni, S., J. Chang, L. Chou, and W. Zhai, Comparison of osteoblast‐like cell responses to calcium silicate and tricalcium phosphate ceramics in vitro. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2007. 80(1): p. 174-183.
10. Nam, H.S., J. An, D.J. Chung, J.H. Kim, and C.P. Chung, Controlled release behavior of bioactive molecules from photo-reactive hyaluronic acid-alginate scaffolds. Macromolecular research, 2006. 14(5): p. 530-538.
11. Jin, Y., D. Yang, Y. Zhou, G. Ma, and J. Nie, Photocrosslinked electrospun chitosan‐based biocompatible nanofibers. Journal of applied polymer science, 2008. 109(5): p. 3337-3343.
12. Kao, W.J., Evaluation of leukocyte adhesion on polyurethanes: the effects of shear stress and blood proteins. Biomaterials, 2000. 21(22): p. 2295-2303.
13. Kokubo, T., H.M. Kim, and M. Kawashita, Novel bioactive materials with different mechanical properties. Biomaterials, 2003. 24(13): p. 2161-2175.
14. Alpert, B. and D. Seligson, Removal of asymptomatic bone plates used for orthognathic surgery and facial fractures. Journal of oral and maxillofacial surgery, 1996. 54(5): p. 618-621.
15. Sinha, V.R. and L. Khosla, Bioabsorbable polymers for implantable therapeutic systems. Drug development and industrial pharmacy, 1998. 24(12): p. 1129-1138.
16. Böstman, O., Absorbable implants for the fixation of fractures. JBJS, 1991. 73(1): p. 148-153.
17. Du, C., F. Cui, Q. Feng, X. Zhu, and K. De Groot, Tissue response to nano-hydroxyapatite/collagen composite implants in marrow cavity. Journal of biomedical materials research, 1998. 42(4): p. 540-548.
18. Du, C., F. Cui, X. Zhu, and K. De Groot, Three‐dimensional nano‐HAp/collagen matrix loading with osteogenic cells in organ culture. Journal of biomedical materials research, 1999. 44(4): p. 407-415.
19. Wei, G. and P.X. Ma, Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering. Biomaterials, 2004. 25(19): p. 4749-4757.
20. Ylmén, R., Early Hydration of Portland Cement. 2013: Chalmers University of Technology.
21. Lea, F.M., The chemistry of cement and concrete. 1970.
22. Estrela, C., L.L. Bammann, C. Estrela, R.S. Silva, and J.D. Pécora, Antimicrobial and chemical study of MTA, Portland cement, calcium hydroxide paste, Sealapex and Dycal. Braz Dent J, 2000. 11(1): p. 3-9.
23. Menezes, R., C.M. Bramante, A. Letra, V.G.G. Carvalho, and R.B. Garcia, Histologic evaluation of pulpotomies in dog using two types of mineral trioxide aggregate and regular and white Portland cements as wound dressings. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, 2004. 98(3): p. 376-379.
24. Abdullah, D., T.P. Ford, S. Papaioannou, J. Nicholson, and F. McDonald, An evaluation of accelerated Portland cement as a restorative material. Biomaterials, 2002. 23(19): p. 4001-4010.
25. Saidon, J., J. He, Q. Zhu, K. Safavi, and L.S. Spångberg, Cell and tissue reactions to mineral trioxide aggregate and Portland cement. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, 2003. 95(4): p. 483-489.
26. Ribeiro, D.A., M.M. Sugui, M.A. Matsumoto, M.A.H. Duarte, M.E.A. Marques, and D.M.F. Salvadori, Genotoxicity and cytotoxicity of mineral trioxide aggregate and regular and white Portland cements on Chinese hamster ovary (CHO) cells in vitro. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, 2006. 101(2): p. 258-261.
27. Braz, M.G., E. Camargo, D.M.F. Salvadori, M. Marques, and D. Ribeiro, Evaluation of genetic damage in human peripheral lymphocytes exposed to mineral trioxide aggregate and Portland cements. Journal of oral rehabilitation, 2006. 33(3): p. 234-239.
28. Holland, R., V.d. Souza, M.J. Nery, I.M. Faraco Júnior, P.F.E. Bernabé, J.A. Otoboni Filho, and E. Dezan Júnior, Reaction of rat connective tissue to implanted dentin tubes filled with a white mineral trioxide aggregate. Brazilian Dental Journal, 2002: p. 23-26.
29. Zhao, W. and J. Chang, Sol–gel synthesis and in vitro bioactivity of tricalcium silicate powders. Materials Letters, 2004. 58(19): p. 2350-2353.
30. Peng, W., W. Liu, W. Zhai, L. Jiang, L. Li, J. Chang, and Y. Zhu, Effect of tricalcium silicate on the proliferation and odontogenic differentiation of human dental pulp cells. Journal of endodontics, 2011. 37(9): p. 1240-1246.
31. Qiu, L., A.D. Deacon, and N.J. Coleman, The impact of zirconium oxide nanoparticles on the hydration chemistry and biocompatibility of white Portland cement. Dental materials journal, 2013. 32(5): p. 808-815.
32. Bortoluzzi, E.A., N.J. Broon, C.M. Bramante, R.B. Garcia, I.G. de Moraes, and N. Bernardineli, Sealing ability of MTA and radiopaque Portland cement with or without calcium chloride for root-end filling. Journal of endodontics, 2006. 32(9): p. 897-900.
33. Lin, K., J. Chang, and R. Cheng, In vitro hydroxyapatite forming ability and dissolution of tobermorite nanofibers. Acta biomaterialia, 2007. 3(2): p. 271-276.
34. Mansur, A.A. and H.S. Mansur, Preparation, characterization and cytocompatibility of bioactive coatings on porous calcium-silicate-hydrate scaffolds. Materials Science and Engineering: C, 2010. 30(2): p. 288-294.
35. Gordon, T.M., D.M. Ranly, and B.D. Boyan, The effects of calcium hydroxide on bovine pulp tissue: variations in pH and calcium concentration. Journal of endodontics, 1985. 11(4): p. 156-160.
36. Byström, A., R. Claesson, and G. Sundqvist, The antibacterial effect of camphorated paramonochlorophenol, camphorated phenol and calcium hydroxide in the treatment of infected root canals. Dental Traumatology, 1985. 1(5): p. 170-175.
37. Chong, B. and T.P. Ford, The role of intracanal medication in root canal treatment. International endodontic journal, 1992. 25(2): p. 97-106.
38. Chung, T.W., Y.F. Lu, H.Y. Wang, W.P. Chen, S.S. Wang, Y.S. Lin, and S.H. Chu, Growth of Human Endothelial Cells on Different Concentrations of Gly‐Arg‐Gly‐Asp Grafted Chitosan Surface. Artificial organs, 2003. 27(2): p. 155-161.
39. Kurita, K., T. Sannan, and Y. Iwakura, Studies on chitin, 4. Evidence for formation of block and random copolymers of N‐acetyl‐D‐glucosamine and D‐glucosamine by hetero‐and homogeneous hydrolyses. Die Makromolekulare Chemie, 1977. 178(12): p. 3197-3202.
40. Vårum, K.M., M.W. Anthonsen, H. Grasdalen, and O. Smidsrød, 13C-Nmr studies of the acetylation sequences in partially N-deacetylated chitins (chitosans). Carbohydrate research, 1991. 217: p. 19-27.
41. Araki, Y. and E. Ito, A pathway of chitosan formation in Mucor rouxii: enzymatic deacetylation of chitin. Biochemical and biophysical research communications, 1974. 56(3): p. 669-675.
42. Lee, J.E., S.E. Kim, I.C. Kwon, H.J. Ahn, H. Cho, S.H. Lee, H.J. Kim, S.C. Seong, and M.C. Lee, Effects of a Chitosan Scaffold Containing TGF‐β1 Encapsulated Chitosan Microspheres on In Vitro Chondrocyte Culture. Artificial Organs, 2004. 28(9): p. 829-839.
43. Bumgardner, J., R. Wiser, S. Elder, R. Jouett, Y. Yang, and J. Ong, Contact angle, protein adsorption and osteoblast precursor cell attachment to chitosan coatings bonded to titanium. Journal of Biomaterials Science, Polymer Edition, 2003. 14(12): p. 1401-1409.
44. Lahiji, A., A. Sohrabi, D.S. Hungerford, and C.G. Frondoza, Chitosan supports the expression of extracellular matrix proteins in human osteoblasts and chondrocytes. Journal of biomedical materials research, 2000. 51(4): p. 586-595.
45. Nettles, D.L., S.H. Elder, and J.A. Gilbert, Potential use of chitosan as a cell scaffold material for cartilage tissue engineering. Tissue engineering, 2002. 8(6): p. 1009-1016.
46. Lee, Y.M., Y.J. Park, S.J. Lee, Y. Ku, S.B. Han, P.R. Klokkevold, S.M. Choi, and C.P. Chung, Tissue engineered bone formation using chitosan/tricalcium phosphate sponges. Journal of periodontology, 2000. 71(3): p. 410-417.
47. Bumgardner, J.D., R. Wiser, P.D. Gerard, P. Bergin, B. Chestnutt, M. Marini, V. Ramsey, S.H. Elder, and J.A. Gilbert, Chitosan: potential use as a bioactive coating for orthopaedic and craniofacial/dental implants. Journal of Biomaterials Science, Polymer Edition, 2003. 14(5): p. 423-438.
48. Li, D. and Y. Xia, Electrospinning of nanofibers: reinventing the wheel? Advanced materials, 2004. 16(14): p. 1151-1170.
49. Ramakrishna, S., K. Fujihara, W.-E. Teo, T.-C. Lim, and Z. Ma, An introduction to electrospinning and nanofibers. Vol. 90. 2005: World Scientific.
50. Kim, S.H., H.J. Ha, Y.K. Ko, S.J. Yoon, J.M. Rhee, M.S. Kim, H.B. Lee, and G. Khang, Correlation of proliferation, morphology and biological responses of fibroblasts on LDPE with different surface wettability. Journal of Biomaterials Science, Polymer Edition, 2007. 18(5): p. 609-622.
51. Guibal, E., Interactions of metal ions with chitosan-based sorbents: a review. Separation and Purification Technology, 2004. 38(1): p. 43-74.
52. Qun, G. and W. Ajun, Effects of molecular weight, degree of acetylation and ionic strength on surface tension of chitosan in dilute solution. Carbohydrate Polymers, 2006. 64(1): p. 29-36.
53. Yamaguchi, I., S. Iizuka, A. Osaka, H. Monma, and J. Tanaka, The effect of citric acid addition on chitosan/hydroxyapatite composites. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003. 214(1): p. 111-118.
54. Prasitsilp, M., R. Jenwithisuk, K. Kongsuwan, N. Damrongchai, and P. Watts, Cellular responses to chitosan in vitro: the importance of deacetylation. Journal of materials science: materials in medicine, 2000. 11(12): p. 773-778.
55. Chellat, F., M. Tabrizian, S. Dumitriu, E. Chornet, C.-H. Rivard, and L. Yahia, Study of biodegradation behavior of chitosan-xanthan microspheres in simulated physiological media. Journal of biomedical materials research, 2000. 53(5): p. 592-599.
56. Yue, W., P. Yao, and Y. Wei, Influence of ultraviolet-irradiated oxygen on depolymerization of chitosan. Polymer Degradation and Stability, 2009. 94(5): p. 851-858.
57. Liu, J. and W. Xia, Purification and characterization of a bifunctional enzyme with chitosanase and cellulase activity from commercial cellulase. Biochemical Engineering Journal, 2006. 30(1): p. 82-87.
58. Dhillon, G., S. Brar, J. Valero, and M. Verma, Bioproduction of hydrolytic enzymes using apple pomace waste by A. niger: applications in biocontrol formulations and hydrolysis of chitin/chitosan. Bioprocess and biosystems engineering, 2011. 34(8): p. 1017-1026.
59. Cai, Q., Z. Gu, Y. Chen, W. Han, T. Fu, H. Song, and F. Li, Degradation of chitosan by an electrochemical process. Carbohydrate Polymers, 2010. 79(3): p. 783-785.
60. Popa-Nita, S., J.-M. Lucas, C. Ladaviere, L. David, and A. Domard, Mechanisms involved during the ultrasonically induced depolymerization of chitosan: characterization and control. Biomacromolecules, 2009. 10(5): p. 1203-1211.
61. Zhang, H. and S.H. Neau, In vitro degradation of chitosan by a commercial enzyme preparation: effect of molecular weight and degree of deacetylation. Biomaterials, 2001. 22(12): p. 1653-1658.
62. Biagini, G., A. Bertani, R. Muzzarelli, A. Damadei, G. DiBenedetto, A. Belligolli, G. Riccotti, C. Zucchini, and C. Rizzoli, Wound management with N-carboxybutyl chitosan. Biomaterials, 1991. 12(3): p. 281-286.
63. Fakhry, A., G.B. Schneider, R. Zaharias, and S. Şenel, Chitosan supports the initial attachment and spreading of osteoblasts preferentially over fibroblasts. Biomaterials, 2004. 25(11): p. 2075-2079.
64. Hamilton, V., Y. Yuan, D.A. Rigney, B.M. Chesnutt, A.D. Puckett, J.L. Ong, Y. Yang, W.O. Haggard, S.H. Elder, and J.D. Bumgardner, Bone cell attachment and growth on well‐characterized chitosan films. Polymer International, 2007. 56(5): p. 641-647.
65. Seol, Y.J., J.Y. Lee, Y.J. Park, Y.M. Lee, I.C. Rhyu, S.J. Lee, S.B. Han, and C.P. Chung, Chitosan sponges as tissue engineering scaffolds for bone formation. Biotechnology letters, 2004. 26(13): p. 1037-1041.
66. Kong, L., Y. Gao, W. Cao, Y. Gong, N. Zhao, and X. Zhang, Preparation and characterization of nano‐hydroxyapatite/chitosan composite scaffolds. Journal of Biomedical Materials Research Part A, 2005. 75(2): p. 275-282.
67. LeGeros, R.Z., Properties of osteoconductive biomaterials: calcium phosphates. Clinical orthopaedics and related research, 2002. 395: p. 81-98.
68. Cai, X., H. Tong, X. Shen, W. Chen, J. Yan, and J. Hu, Preparation and characterization of homogeneous chitosan–polylactic acid/hydroxyapatite nanocomposite for bone tissue engineering and evaluation of its mechanical properties. Acta biomaterialia, 2009. 5(7): p. 2693-2703.
69. Thomson, R.C., M.J. Yaszemski, J.M. Powers, and A.G. Mikos, Hydroxyapatite fiber reinforced poly (α-hydroxy ester) foams for bone regeneration. Biomaterials, 1998. 19(21): p. 1935-1943.
70. Ma, P.X., R. Zhang, G. Xiao, and R. Franceschi, Engineering new bone tissue in vitro on highly porous poly (α‐hydroxyl acids)/hydroxyapatite composite scaffolds. Journal of biomedical materials research, 2001. 54(2): p. 284-293.
71. Kong, L., Y. Gao, G. Lu, Y. Gong, N. Zhao, and X. Zhang, A study on the bioactivity of chitosan/nano-hydroxyapatite composite scaffolds for bone tissue engineering. European Polymer Journal, 2006. 42(12): p. 3171-3179.
72. Budiraharjo, R., K. Neoh, E. Kang, and A. Kishen, Bioactivity of novel carboxymethyl chitosan scaffold incorporating MTA in a tooth model. International endodontic journal, 2010. 43(10): p. 930-939.
73. Chen, C.C., W.C. Wang, and S.J. Ding, In vitro physiochemical properties of a biomimetic gelatin/chitosan oligosaccharide/calcium silicate cement. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2010. 95(2): p. 456-465.
74. Ding, S.J., M.Y. Shie, and C.K. Wei, In vitro physicochemical properties, osteogenic activity, and immunocompatibility of calcium silicate–gelatin bone grafts for load-bearing applications. ACS applied materials & interfaces, 2011. 3(10): p. 4142-4153.
75. Li, H. and J. Chang, Fabrication and characterization of bioactive wollastonite/PHBV composite scaffolds. Biomaterials, 2004. 25(24): p. 5473-5480.
76. Langer, R. and P. Joseph, Vacanti. Tissue engineering. Science, l, 1993. 993: p. 26O.
77. Griffith, L.G. and G. Naughton, Tissue engineering--current challenges and expanding opportunities. Science, 2002. 295(5557): p. 1009-1014.
78. Ma, P.X. and R. Zhang, Synthetic nano-scale fibrous extracellular matrix. Journal of biomedical materials research, 1999. 46(1): p. 60-72.
79. Kisiday, J., M. Jin, B. Kurz, H. Hung, C. Semino, S. Zhang, and A. Grodzinsky, Self-assembling peptide hydrogel fosters chondrocyte extracellular matrix production and cell division: implications for cartilage tissue repair. Proceedings of the National Academy of Sciences, 2002. 99(15): p. 9996-10001.
80. Teo, W.E., W. He, and S. Ramakrishna, Electrospun scaffold tailored for tissue‐specific extracellular matrix. Biotechnology journal, 2006. 1(9): p. 918-929.
81. Li, W.J., C.T. Laurencin, E.J. Caterson, R.S. Tuan, and F.K. Ko, Electrospun nanofibrous structure: a novel scaffold for tissue engineering. Journal of biomedical materials research, 2002. 60(4): p. 613-621.
82. Formalas, A., US patent, 1 975 504, 1934;(b) J. Doshi and DH Reneker. J. Electrost, 1995. 35: p. 151.
83. Shin, M., O. Ishii, T. Sueda, and J. Vacanti, Contractile cardiac grafts using a novel nanofibrous mesh. Biomaterials, 2004. 25(17): p. 3717-3723.
84. Reneker, D.H. and I. Chun, Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology, 1996. 7(3): p. 216.
85. Shin, M., H. Yoshimoto, and J.P. Vacanti, In vivo bone tissue engineering using mesenchymal stem cells on a novel electrospun nanofibrous scaffold. Tissue engineering, 2004. 10(1-2): p. 33-41.
86. Fridrikh, S.V., H.Y. Jian, M.P. Brenner, and G.C. Rutledge, Controlling the fiber diameter during electrospinning. Physical review letters, 2003. 90(14): p. 144502.
87. Hohman, M.M., M. Shin, G. Rutledge, and M.P. Brenner, Electrospinning and electrically forced jets. I. Stability theory. Physics of Fluids (1994-present), 2001. 13(8): p. 2201-2220.
88. Hohman, M.M., M. Shin, G. Rutledge, and M.P. Brenner, Electrospinning and electrically forced jets. II. Applications. Physics of Fluids (1994-present), 2001. 13(8): p. 2221-2236.
89. Yarin, A.L., S. Koombhongse, and D.H. Reneker, Taylor cone and jetting from liquid droplets in electrospinning of nanofibers. Journal of applied physics, 2001. 90(9): p. 4836-4846.
90. Kameoka, J. and H. Craighead, Fabrication of oriented polymeric nanofibers on planar surfaces by electrospinning. Applied Physics Letters, 2003. 83(2): p. 371-373.
91. Sundaray, B., V. Subramanian, T. Natarajan, R.-Z. Xiang, C.-C. Chang, and W.-S. Fann, Electrospinning of continuous aligned polymer fibers. Applied physics letters, 2004. 84(7): p. 1222-1224.
92. Li, D., G. Ouyang, J.T. McCann, and Y. Xia, Collecting electrospun nanofibers with patterned electrodes. Nano letters, 2005. 5(5): p. 913-916.
93. Yang, F., R. Murugan, S. Wang, and S. Ramakrishna, Electrospinning of nano/micro scale poly (L-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials, 2005. 26(15): p. 2603-2610.
94. Theron, A., E. Zussman, and A. Yarin, Electrostatic field-assisted alignment of electrospun nanofibres. Nanotechnology, 2001. 12(3): p. 384.
95. Lee, C.H., H.J. Shin, I.H. Cho, Y.-M. Kang, I.A. Kim, K.-D. Park, and J.-W. Shin, Nanofiber alignment and direction of mechanical strain affect the ECM production of human ACL fibroblast. Biomaterials, 2005. 26(11): p. 1261-1270.
96. Shin, Y., M. Hohman, M. Brenner, and G. Rutledge, Electrospinning: A whipping fluid jet generates submicron polymer fibers. Applied physics letters, 2001. 78(8): p. 1149-1151.
97. Zong, X., K. Kim, D. Fang, S. Ran, B.S. Hsiao, and B. Chu, Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer, 2002. 43(16): p. 4403-4412.
98. Katti, D.S., K.W. Robinson, F.K. Ko, and C.T. Laurencin, Bioresorbable nanofiber‐based systems for wound healing and drug delivery: Optimization of fabrication parameters. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2004. 70(2): p. 286-296.
99. Larrondo, L. and R. St John Manley, Electrostatic fiber spinning from polymer melts. I. Experimental observations on fiber formation and properties. Journal of Polymer Science: Polymer Physics Edition, 1981. 19(6): p. 909-920.
100. Buchko, C.J., L.C. Chen, Y. Shen, and D.C. Martin, Processing and microstructural characterization of porous biocompatible protein polymer thin films. Polymer, 1999. 40(26): p. 7397-7407.
101. Yuan, X., Y. Zhang, C. Dong, and J. Sheng, Morphology of ultrafine polysulfone fibers prepared by electrospinning. Polymer International, 2004. 53(11): p. 1704-1710.
102. Ki, C.S., D.H. Baek, K.D. Gang, K.H. Lee, I.C. Um, and Y.H. Park, Characterization of gelatin nanofiber prepared from gelatin–formic acid solution. Polymer, 2005. 46(14): p. 5094-5102.
103. Mit‐uppatham, C., M. Nithitanakul, and P. Supaphol, Ultrafine electrospun polyamide‐6 fibers: effect of solution conditions on morphology and average fiber diameter. Macromolecular Chemistry and Physics, 2004. 205(17): p. 2327-2338.
104. Casper, C.L., J.S. Stephens, N.G. Tassi, D.B. Chase, and J.F. Rabolt, Controlling surface morphology of electrospun polystyrene fibers: effect of humidity and molecular weight in the electrospinning process. Macromolecules, 2004. 37(2): p. 573-578.
105. Duan, B., C. Dong, X. Yuan, and K. Yao, Electrospinning of chitosan solutions in acetic acid with poly (ethylene oxide). Journal of Biomaterials Science, Polymer Edition, 2004. 15(6): p. 797-811.
106. Bhattarai, N., D. Edmondson, O. Veiseh, F.A. Matsen, and M. Zhang, Electrospun chitosan-based nanofibers and their cellular compatibility. Biomaterials, 2005. 26(31): p. 6176-6184.
107. Chen, Z., P. Wang, B. Wei, X. Mo, and F. Cui, Electrospun collagen–chitosan nanofiber: A biomimetic extracellular matrix for endothelial cell and smooth muscle cell. Acta Biomaterialia, 2010. 6(2): p. 372-382.
108. Jayakumar, R., M. Prabaharan, P.S. Kumar, S. Nair, and H. Tamura, Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnology advances, 2011. 29(3): p. 322-337.
109. Muzzarelli, R.A., F. Greco, A. Busilacchi, V. Sollazzo, and A. Gigante, Chitosan, hyaluronan and chondroitin sulfate in tissue engineering for cartilage regeneration: A review. Carbohydrate Polymers, 2012. 89(3): p. 723-739.
110. Klokkevold, P.R., L. Vandemark, E.B. Kenney, and G.W. Bernard, Osteogenesis enhanced by chitosan (poly-N-acetyl glucosaminoglycan) in vitro. Journal of periodontology, 1996. 67(11): p. 1170-1175.
111. Maeda, N., J. Miao, T. Simmons, J. Dordick, and R. Linhardt, Composite polysaccharide fibers prepared by electrospinning and coating. Carbohydrate polymers, 2014. 102: p. 950-955.
112. Yang, X., X. Chen, and H. Wang, Acceleration of osteogenic differentiation of preosteoblastic cells by chitosan containing nanofibrous scaffolds. Biomacromolecules, 2009. 10(10): p. 2772-2778.
113. Zhang, Y., J.R. Venugopal, A. El-Turki, S. Ramakrishna, B. Su, and C.T. Lim, Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering. Biomaterials, 2008. 29(32): p. 4314-4322.
114. Sambudi, N.S., M. Sathyamurthy, G.M. Lee, and S.B. Park, Electrospun chitosan/poly (vinyl alcohol) reinforced with CaCO 3 nanoparticles with enhanced mechanical properties and biocompatibility for cartilage tissue engineering. Composites Science and Technology, 2015. 106: p. 76-84.
115. Desai, N.P. and J.A. Hubbell, Surface physical interpenetrating networks of poly (ethylene terephthalate) and poly (ethylene oxide) with biomedical applications. Macromolecules, 1992. 25(1): p. 226-232.
116. Venugopal, J., M.P. Prabhakaran, Y. Zhang, S. Low, A.T. Choon, and S. Ramakrishna, Biomimetic hydroxyapatite-containing composite nanofibrous substrates for bone tissue engineering. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 2010. 368(1917): p. 2065-2081.
117. Toskas, G., C. Cherif, R.-D. Hund, E. Laourine, B. Mahltig, A. Fahmi, C. Heinemann, and T. Hanke, Chitosan (PEO)/silica hybrid nanofibers as a potential biomaterial for bone regeneration. Carbohydrate polymers, 2013. 94(2): p. 713-722.
118. Yang, S.l., Z.H. Wu, W. Yang, and M.B. Yang, Thermal and mechanical properties of chemical crosslinked polylactide (PLA). Polymer Testing, 2008. 27(8): p. 957-963.
119. Mukherjee, D., A. Tunkle, R. Roberts, A. Clavenna, S. Rogers, and D. Smith, An animal evaluation of a paste of chitosan glutamate and hydroxyapatite as a synthetic bone graft material. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2003. 67(1): p. 603-609.
120. Gough, J.E., C.A. Scotchford, and S. Downes, Cytotoxicity of glutaraldehyde crosslinked collagen/poly (vinyl alcohol) films is by the mechanism of apoptosis. Journal of Biomedical Materials Research Part A, 2002. 61(1): p. 121-130.
121. Sung, H.W., R.N. Huang, L.L. Huang, and C.C. Tsai, In vitro evaluation of cytotoxicity of a naturally occurring cross-linking reagent for biological tissue fixation. Journal of Biomaterials Science, Polymer Edition, 1999. 10(1): p. 63-78.
122. Chiono, V., E. Pulieri, G. Vozzi, G. Ciardelli, A. Ahluwalia, and P. Giusti, Genipin-crosslinked chitosan/gelatin blends for biomedical applications. Journal of Materials Science: Materials in Medicine, 2008. 19(2): p. 889-898.
123. Bi, L., Z. Cao, Y. Hu, Y. Song, L. Yu, B. Yang, J. Mu, Z. Huang, and Y. Han, Effects of different cross-linking conditions on the properties of genipin-cross-linked chitosan/collagen scaffolds for cartilage tissue engineering. Journal of Materials Science: Materials in Medicine, 2011. 22(1): p. 51-62.
124. Mirzae, E. Faridi-Majidi., Preparation of chitosan based nanofibers as a potential wound dressing by electrospinning. in the 4th International Conference on Nanostructures (ICNS4), Kish Island, IR Iran. 2012.
125. Xu, X. and J.F. Zhang, Cross-linked electrospun fibrous scaffolds for tissue engineering. Current Tissue Engineering, 2012. 1(1): p. 2-14.
126. Sionkowska, A., M. Wisniewski, J. Skopinska, S. Vicini, and E. Marsano, The influence of UV irradiation on the mechanical properties of chitosan/poly (vinyl pyrrolidone) blends. Polymer Degradation and Stability, 2005. 88(2): p. 261-267.
127. Liu, T., W.K. Teng, B.P. Chan, and S.Y. Chew, Photochemical crosslinked electrospun collagen nanofibers: synthesis, characterization and neural stem cell interactions. Journal of biomedical materials research Part A, 2010. 95(1): p. 276-282.
128. Lin, W.H. and W.B. Tsai, In situ UV-crosslinking gelatin electrospun fibers for tissue engineering applications. Biofabrication, 2013. 5(3): p. 035008.
129. Zhang, Y., V.J. Reddy, S.Y. Wong, X. Li, B. Su, S. Ramakrishna, and C.T. Lim, Enhanced biomineralization in osteoblasts on a novel electrospun biocomposite nanofibrous substrate of hydroxyapatite/collagen/chitosan. Tissue Engineering Part A, 2010. 16(6): p. 1949-1960.
130. Barner‐Kowollik, C., P. Vana, and T.P. Davis, Laser‐induced decomposition of 2, 2‐dimethoxy‐2‐phenylacetophenone and benzoin in methyl methacrylate homopolymerization studied via matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry. Journal of Polymer Science Part A: Polymer Chemistry, 2002. 40(5): p. 675-681.
131. Tang, S. and L. Edman, On-demand photochemical stabilization of doping in light-emitting electrochemical cells. Electrochimica Acta, 2011. 56(28): p. 10473-10478.
132. Aduba, D., Bachelor of science. Master of Science. Biomedical Engineering, 2008.
133. Thien, D.V.H., Preparation and Application of Chitosan Electrosprayed Nanoparticles and Electrospun Nanofibers. Chemical Engineering, in Department of Chemical Engineering. 2012,National Taiwan University of Science of Technology:Taipei,Taiwan.
134. Pelipenko, J., J. Kristl, B. Janković, S. Baumgartner, and P. Kocbek, The impact of relative humidity during electrospinning on the morphology and mechanical properties of nanofibers. International journal of pharmaceutics, 2013. 456(1): p. 125-134.
135. Tirtaatmadja, V., G.H. McKinley, and J.J. Cooper-White, Drop formation and breakup of low viscosity elastic fluids: Effects of molecular weight and concentration. Physics of fluids, 2006. 18(4): p. 043101.
136. Bullard, J.W., H.M. Jennings, R.A. Livingston, A. Nonat, G.W. Scherer, J.S. Schweitzer, K.L. Scrivener, and J.J. Thomas, Mechanisms of cement hydration. Cement and Concrete Research, 2011. 41(12): p. 1208-1223.
137. Geng, X., O.H. Kwon, and J. Jang, Electrospinning of chitosan dissolved in concentrated acetic acid solution. Biomaterials, 2005. 26(27): p. 5427-5432.
138. Christopherson, G.T., H. Song, and H.-Q. Mao, The influence of fiber diameter of electrospun substrates on neural stem cell differentiation and proliferation. Biomaterials, 2009. 30(4): p. 556-564.
139. Mollah, M.Y.A., F. Lu, and D.L. Cocke, An X-ray diffraction (XRD) and Fourier transform infrared spectroscopic (FT-IR) characterization of the speciation of arsenic (V) in Portland cement type-V. Science of the total environment, 1998. 224(1): p. 57-68.
140. Fertier, L., H. Koleilat, M. Stemmelen, O. Giani, C. Joly-Duhamel, V. Lapinte, and J.-J. Robin, The use of renewable feedstock in UV-curable materials–A new age for polymers and green chemistry. Progress in Polymer Science, 2013. 38(6): p. 932-962.
141. Ma, G., X. Zhang, J. Han, G. Song, and J. Nie, Photo-polymeriable chitosan derivative prepared by Michael reaction of chitosan and polyethylene glycol diacrylate (PEGDA). International journal of biological macromolecules, 2009. 45(5): p. 499-503.
142. Van, N.C., One-step electrospinning of photo-crosslinked Chitosan/Biphasic Calcium Phosphate Nanofibers. in Department of Chemical Engineering. 2014,National Taiwan University of Science of Technology:Taipei,Taiwan..
143. Meng, L., O. Arnoult, M. Smith, and G.E. Wnek, Electrospinning of in situ crosslinked collagen nanofibers. Journal of Materials Chemistry, 2012. 22(37): p. 19412-19417.
144. Zhang, Y., J. Venugopal, Z.-M. Huang, C. Lim, and S. Ramakrishna, Crosslinking of the electrospun gelatin nanofibers. Polymer, 2006. 47(8): p. 2911-2917.
145. Keogh, M.B., F.J. O’Brien, and J.S. Daly, Substrate stiffness and contractile behaviour modulate the functional maturation of osteoblasts on a collagen–GAG scaffold. Acta Biomaterialia, 2010. 6(11): p. 4305-4313.
146. Ko, J.H., H. Yin, J. An, D.J. Chung, J.-H. Kim, S.B. Lee, and D.G. Pyun, Characterization of cross-linked gelatin nanofibers through electrospinning. Macromolecular research, 2010. 18(2): p. 137-143.
147. Kurniawan, C., Crosslinking of Chitosan Electrospun Nanofibers by UV-Irradiation for Tissue Engineering Scaffolds. Department of Chemical Engineering, 2013: p. 121.
148. Lumapat, P.N., Preparation of Nitric Oxide-Releasing Photo-crosslinked Electrospun Chitosan Nanofibrous Scaffolds for Bone Tissue Engineering. in Department of Chemical Engineering. 2016,National Taiwan University of Science of Technology:Taipei,Taiwan.
149. Hirano, S. and M. Ando, Fluoride mediates apoptosis in osteosarcoma UMR 106 and its cytotoxicity depends on the pH. Archives of toxicology, 1997. 72(1): p. 52-58.
150. Estrela, C. and R. Holland, Calcium hydroxide: study based on scientific evidences. Journal of Applied Oral Science, 2003. 11(4): p. 269-282.
151. Foreman, P. and I. Barnes, A review of calcium hydroxide. International Endodontic Journal, 1990. 23(6): p. 283-297.
152. Shi, D. and D.N. Winslow, Contact angle and damage during mercury intrusion into cement paste. Cement and Concrete Research, 1985. 15(4): p. 645-654.
153. Ramires, P., A. Giuffrida, and E. Milella, Three-dimensional reconstruction of confocal laser microscopy images to study the behaviour of osteoblastic cells grown on biomaterials. Biomaterials, 2002. 23(2): p. 397-406.
154. Ku, S.H., J. Ryu, S.K. Hong, H. Lee, and C.B. Park, General functionalization route for cell adhesion on non-wetting surfaces. Biomaterials, 2010. 31(9): p. 2535-2541.
155. Frohbergh, M.E., A. Katsman, G.P. Botta, P. Lazarovici, C.L. Schauer, U.G. Wegst, and P.I. Lelkes, Electrospun hydroxyapatite-containing chitosan nanofibers crosslinked with genipin for bone tissue engineering. Biomaterials, 2012. 33(36): p. 9167-9178.
156. Bialorucki, C., G. Subramanian, M. Elsaadany, and E. Yildirim-Ayan, In situ osteoblast mineralization mediates post-injection mechanical properties of osteoconductive material. Journal of the mechanical behavior of biomedical materials, 2014. 38: p. 143-153.
157. Nefussi, J.-R., M. Boy-Lefevre, H. Boulekbache, and N. Forest, Mineralization in vitro of matrix formed by osteoblasts isolated by collagenase digestion. Differentiation, 1985. 29(2): p. 160-168.
158. De Deus, G., R. Ximenes, E. Gurgel‐Filho, M. Plotkowski, and T. Coutinho‐Filho, Cytotoxicity of MTA and Portland cement on human ECV 304 endothelial cells. International endodontic journal, 2005. 38(9): p. 604-609.
159. Pelliccioni, G., G. Ciapetti, E. Cenni, D. Granchi, M. Nanni, S. Pagani, and A. Giunti, Evaluation of osteoblast-like cell response to Proroot™ MTA (mineral trioxide aggregate) cement. Journal of Materials Science: Materials in Medicine, 2004. 15(2): p. 167-173.
160. Maeno, S., Y. Niki, H. Matsumoto, H. Morioka, T. Yatabe, A. Funayama, Y. Toyama, T. Taguchi, and J. Tanaka, The effect of calcium ion concentration on osteoblast viability, proliferation and differentiation in monolayer and 3D culture. Biomaterials, 2005. 26(23): p. 4847-4855.
161. Shie, M.Y., S.J. Ding, and H.C. Chang, The role of silicon in osteoblast-like cell proliferation and apoptosis. Acta Biomaterialia, 2011. 7(6): p. 2604-2614.
162. Kim, C.Y., A.E. Clark, and L.L. Hench, Early stages of calcium-phosphate layer formation in bioglasses. Journal of Non-Crystalline Solids, 1989. 113(2-3): p. 195-202.
163. Barrère, F., C.A. van Blitterswijk, and K. de Groot, Bone regeneration: molecular and cellular interactions with calcium phosphate ceramics. International journal of nanomedicine, 2006. 1(3): p. 317.
164. Liu, H., H. Peng, Y. Wu, C. Zhang, Y. Cai, G. Xu, Q. Li, X. Chen, J. Ji, and Y. Zhang, The promotion of bone regeneration by nanofibrous hydroxyapatite/chitosan scaffolds by effects on integrin-BMP/Smad signaling pathway in BMSCs. Biomaterials, 2013. 34(18): p. 4404-4417.
165. Stein, G.S., J.B. Lian, J.L. Stein, A.J. Van Wijnen, and M. Montecino, Transcriptional control of osteoblast growth and differentiation. Physiological reviews, 1996. 76(2): p. 593-629.
166. Chen, C.L., T.H. Huang, S.J. Ding, M.Y. Shie, and C.T. Kao, Comparison of calcium and silicate cement and mineral trioxide aggregate biologic effects and bone markers expression in MG63 cells. Journal of endodontics, 2009. 35(5): p. 682-685.
167. Butler, W.T., The nature and significance of osteopontin. Connective tissue research, 1989. 23(2-3): p. 123-136.
168. Chang, P.C., B.Y. Liu, C.M. Liu, H.H. Chou, M.H. Ho, H.C. Liu, D.M. Wang, and L.T. Hou, Bone tissue engineering with novel rhBMP2‐PLLA composite scaffolds. Journal of Biomedical Materials Research Part A, 2007. 81(4): p. 771-780.
169. Kokkonen, H.E., J.M. Ilvesaro, M. Morra, H.A. Schols, and J. Tuukkanen, Effect of modified pectin molecules on the growth of bone cells. Biomacromolecules, 2007. 8(2): p. 509-515.
170. Tran, X., C. Gorin, C. Willig, B. Baroukh, B. Pellat, F. Decup, S. Opsahl Vital, C. Chaussain, and T. Boukpessi, Effect of a calcium-silicate-based restorative cement on pulp repair. Journal of Dental Research, 2012. 91(12): p. 1166-1171.
171. Goldberg, M. and A.J. Smith, Cells and extracellular matrices of dentin and pulp: a biological basis for repair and tissue engineering. Critical Reviews in Oral Biology & Medicine, 2004. 15(1): p. 13-27.
172. Bhumiratana, S., W.L. Grayson, A. Castaneda, D.N. Rockwood, E.S. Gil, D.L. Kaplan, and G. Vunjak-Novakovic, Nucleation and growth of mineralized bone matrix on silk-hydroxyapatite composite scaffolds. Biomaterials, 2011. 32(11): p. 2812-2820.
173. Liu, H., H. Yazici, C. Ergun, T.J. Webster, and H. Bermek, An in vitro evaluation of the Ca/P ratio for the cytocompatibility of nano-to-micron particulate calcium phosphates for bone regeneration. Acta Biomaterialia, 2008. 4(5): p. 1472-1479.
174. Rey, C., M. Freche, M. Heughebaert, J. Heughebaert, J. Lacout, A. Lebugle, J. Szilagyi, and M. Vignoles, Apatite chemistry in biomaterial preparation, shaping and biological behaviour. Bioceramics, 1991. 4: p. 57-64.
175. Zanini, M., J.M. Sautier, A. Berdal, and S. Simon, Biodentine induces immortalized murine pulp cell differentiation into odontoblast-like cells and stimulates biomineralization. Journal of endodontics, 2012. 38(9): p. 1220-1226.
176. Laurent, P., J. Camps, and I. About, BiodentineTM induces TGF‐β1 release from human pulp cells and early dental pulp mineralization. International endodontic journal, 2012. 45(5): p. 439-448.
177. Min, K.S., H.I. Kim, H.J. Park, S.H. Pi, C.U. Hong, and E.C. Kim, Human pulp cells response to Portland cement in vitro. Journal of Endodontics, 2007. 33(2): p. 163-166.
178. Venugopal, J.R., V.R.G. Dev, T. Senthilram, D. Sathiskumar, D. Gupta, and S. Ramakrishna, Osteoblast mineralization with composite nanofibrous substrate for bone tissue regeneration. Cell biology international, 2011. 35(1): p. 73-80.
179. Venugopal, J., S. Low, A.T. Choon, T.S. Kumar, and S. Ramakrishna, Mineralization of osteoblasts with electrospun collagen/hydroxyapatite nanofibers. Journal of Materials Science: Materials in Medicine, 2008. 19(5): p. 2039-2046.

無法下載圖示 全文公開日期 2022/08/14 (校內網路)
全文公開日期 2024/08/14 (校外網路)
全文公開日期 2024/08/14 (國家圖書館:臺灣博碩士論文系統)
QR CODE