簡易檢索 / 詳目顯示

研究生: 林辰翰
Chen-Han Lin
論文名稱: 儲能系統之接地研究
A Study on Grounding of Energy Storage System
指導教授: 陳坤隆
Kun-Long Chen
口試委員: 張建國
Chien-Kuo Chang
楊明達
Ming-Da Yang
楊金石
Jin-Shi Yang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 107
中文關鍵詞: 儲能系統接地系統變流器地電位
外文關鍵詞: Energy storage system, grounding system, inverter, ground potential
相關次數: 點閱:367下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

儲能系統主要由下述三個部份組成,主要有電力調節系統(power conversion system, PCS)、電池管理系統(battery management system, BMS)與能源管理系統(energy management system, EMS)。其中 EMS 相當於儲能系統的核心,需要決定系統何時充電與放電,以及監控設施內的消防系統、門禁系統與環境溫溼度等資訊,設備與 EMS 間須保持良好的資料傳輸。而在電力系統中,接地系統具有穩定電位、洩放靜電荷、雷擊電流洩放路徑、設備外殼接地可防止感電與提供參考電位等功能,若儲能設施的接地系統設計不良,會使 PCS 進行電能轉換,操作併網開關時,產生額外的雜訊,對通訊線路造成電磁干擾,使設備間的通訊中斷,造成儲能系統暫時失能。
本論文分析儲能系統在不同接地方式下投入與切離電網時,接地點上的暫態電壓變化。並參考 IEC 60364 標準中的 TT、TN、IT 等接地方式,分析不同的操作情境,包含儲能系統併入電網、儲能系統切離電網時的開關操作,與不同的接地阻抗變化。本論文以 EMTPATPDraw 建立儲能系統模型,模擬各情境後,提出地電位變動較低的接地方式。


The energy storage system is mainly composed of the following three parts, including the power conversion system (PCS), battery management system (BMS), and energy management system (EMS). Among them, EMS is the core of the energy storage system. EMS needs to decide when to charge and discharge, and monitor information such as the fire protection system, access control system, and ambient temperature and humidity in the facility. Good data transmission must be maintained between the equipment and the EMS. In the power system, the grounding system has the functions of stabilizing the potential, discharging static charges, lightning current discharge path, grounding the equipment shell to prevent induction, providing reference potential. If the grounding system of the energy storage facility is poorly designed, the noise generated by the PCS may cause electromagnetic interference to the communication line during the switching operation. In severe cases, the energy storage system will be temporarily disabled.
This thesis analyzes the transient voltage variation at the grounding point when the ESS is connected or disconnected from the grid under different grounding methods. Referring to the grounding methods such as TT, TN, and IT in IEC 60364 standard, and analyzes in different ground impedance. The energy storage system model is established with EMTPATPDraw. After simulating various scenarios, a grounding method with low ground potential variation is proposed.

摘要 I Abstract III 目錄 VII 圖目錄 XI 表目錄 XV 第一章 緒論 1 1.1 研究背景與動機 1 1.2 文獻探討 2 1.3 研究方法 3 1.4 論文架構 4 第二章 接地系統 7 2.1 接地系統簡介 7 2.1.1 電力系統接地 7 2.1.2 電子電路接地 8 2.1.3 避雷系統接地 8 2.2 電力系統之接地規範 9 2.2.1 電氣設備接地 9 2.2.2 用戶用電設備裝置規則 11 2.2.3 輸配電設備裝置規則 12 2.2.4 建築物屋內外電信設備設置技術規範 13 2.2.5 建築技術規則建築設備編 14 2.2.6 輸電系統規劃準則 14 2.2.7 用戶配電場所設置規範 14 2.2.8 IEEE Std 3003.1™-2019 15 2.2.9 IEEE Std 3003.2™-2014 21 2.2.10 IEEE Std 1547.9-2022 24 2.2.11 IEEE Std 1547.2-2008 24 2.3 接地系統相關研究 25 2.3.1 科技廠接地案例 26 2.3.2 鐵路電氣系統接地案例 27 2.3.3 太陽能發電廠接地案例 28 2.3.4 變電所接地 28 2.4 本章小結 29 第三章 接地點電位量測與分析 31 3.1 前言 31 3.2 量測架構 32 3.3 量測項目 34 3.4 量測結果 36 3.5 頻譜分析 38 3.6 本章小結 40 第四章 儲能系統等效模型 41 4.1 配電設備等效 41 4.1.1 輸出變壓器 41 4.1.2 低壓變壓器 43 4.1.3 配電變壓器 44 4.1.4 電纜模型 46 4.2 接地系統模型 46 4.3 儲能設備等效 48 4.3.1 電池櫃模型 48 4.3.2 功率調節系統模型 49 4.3.3 併網控制 50 4.3.3.1 座標軸轉換 50 4.3.3.2 市電相角計算 51 4.3.3.3 開關元件控制 52 4.3.3.4 功率控制策略 53 4.4 模擬結果 55 4.5 本章小結 59 第五章 儲能系統接地方式模擬 61 5.1 前言 61 5.2 模擬架構介紹 61 5.2.1 TT接地架構 62 5.2.2 IT接地架構 63 5.2.3 TN-C接地架構 63 5.2.4 TN-S接地架構 64 5.2.5 TN-C-S接地架構 64 5.3 模擬結果 65 5.3.1 TT模擬結果 66 5.3.2 IT模擬結果 70 5.3.3 TN-C模擬結果 71 5.3.4 TN-S模擬結果 73 5.3.5 TN-C-S模擬結果 75 5.4 模擬總結 76 第六章 結論與未來研究方向 79 6.1 結論 79 6.2 未來研究方向 79 參考文獻 81

[1] J. Yoo, Y. -R. Lee, H. Kim and S. K. Sul, “Shielding Technique for Noise Reduction in Hall-Effect Current Sensor of Voltage Source Inverter,” in Proc. IEEE Energy Conversion Congress and Exposition (ECCE), Detroit, MI, USA, Oct. 2022.
[2] H. Zhang, S. Wang, and J. Puukko, “Common mode EMI noise modeling and prediction for a three-phase, three-level, grid tied photovoltaic inverter,” in Proc. 7th Asia Pacific International Symposium on Electromagnetic Compatibility (APEMC), Shenzhen, China, May 2016.
[3] F. T. K. Suan, N. A. Rahim, and H. W. Ping, “Modeling, analysis and control of various types of transformerless grid connected PV inverters,” in Proc. IEEE Conference on Clean Energy and Technology (CET), Kuala Lumpur, Malaysia, Jun. 2011.
[4] H. Zhang and A. Wu, “Common-mode noise reduction by parasitic capacitance cancellation in the three-phase inverter,” IEEE Trans. Electromagn. Compat., vol. 61, no. 1, pp. 295–300, Feb. 2019.
[5] K. Ishikawa, S. Ogasawara, M. Takemoto and K. Orikawa, “Reduction of stray capacitance in an inverter main circuit using multilayer printed circuit boards,” in Proc. IEEE 4th International Future Energy Electronics Conference (IFEEC), Singapore, Feb. 2019.
[6] A. B. Nassif, “A protection and grounding strategy for integrating inverter-based distributed energy resources in an isolated microgrid,” CPSS Trans. Power Electron. Appl., vol. 5, no. 3, pp. 242–250, Sept. 2020.
[7] Masayuki Morimoto, “Reduction of high frequency leakage current from PWM inverter-motor system at the integrated grounding system,” in Proc. Applied Power Electronics Conferences and Exposition, Dallas, TX, USA, Mar. 2006.
[8] M. Naghizadeh, E. Farjah, T. Ghanbari, H. Pourgharibshahi, and M. T. Andani, “Efficient grounding method for DC microgrid with multiple grounding points,” in Proc. Clemson University Power Systems Conference (PSC), Charleston, SC, USA, Sept. 2018.
[9] C. Jettanasen, S. Bunjongjit and A. Ngaopitakkul, “Impact of electromagnetic interference filter performance in a system without and with grounding for supporting the nanogrid road lighting system,” in Proc. IEEE/IAS 57th Industrial and Commercial Power Systems Technical Conference (I&CPS), Las Vegas, NV, USA, Apr. 2021.
[10] K. Xing, F. C. Lee, J. S. Lai, T. Gurjit, and D. Borojevic, “Adjustable speed drive neutral voltage shift and grounding issues in a DC distribution system,” in Proc. IEEE Ind. Appl. Society Annual Meeting, New Orleans, LA, USA, Oct. 1997.
[11] IOSH安全資料表電氣設備接地,中華民國勞動部,民國一百零五年五月。
[12] 用戶用電設備裝置規則,中華民國經濟部工業目,民國一百一十年三月。
[13] 輸配電設備裝置規則,中華民國經濟部工業目,民國一百零六年十月。
[14] 建築物屋內外電信設備設置技術規範,中華民國國家通訊傳播委員會,民國一百一十年二月。
[15] 建築技術規則建築設備編,中華民國內政部營建目,民國一百一十一年十二月。
[16] 台灣電力股份有限公司,「輸電系統規劃準則」,民國八十七年十月。
[17] 台灣電力股份有限公司,「用戶配電場所設置規範」,民國七十九年三月。
[18] IEEE Recommended Practice for System Grounding of Industrial and Commercial Power Systems, IEEE Standard 3003.1-2019, Aug. 2019.
[19] IEEE Recommended Practice for Equipment Grounding and Bonding in Industrial and Commercial Power Systems, IEEE Standard 3003.2-2014, Oct. 2014.
[20] IEEE guide for Using IEEE Std 1547 for Interconnection of Energy Storage Distributed Energy Resources with Electric Power Systems, IEEE Std 1547.9-2022, Aug. 2022.
[21] IEEE Application Guide for IEEE Std 1547, IEEE Standard for Interconnecting Distributed Resources with Electric Power Systems, IEEE Std 1547.2-2008, Apr. 2009.
[22] 林南瑞,「大型科技廠接地系統之接地故障特性研究」,中原大學碩士論文,2003年6月。
[23] 吳孟昌,「大型高科技工廠多地網接地系統雷擊與開關突波特性分析」,中原大學碩士論文,2002年6月。
[24] 張家豪,「科學園區特高壓供電系統及用戶變電站之接地系統最佳整合」,國立台北科技大學碩士論文,2003年6月。
[25] 丁年平,「科學園區高壓用戶變電站與電力公司之接地最佳整合研究」,國立台北科技大學碩士論文,2003年6月。
[26] 黃鈺倫,「捷運系統主變電站接地系統之開關突波特性分析」,中原大學碩士論文,2002年6月。
[27] 劉映杰,「高速鐵路主變電站接地系統之雷擊與 接地故障特性研究」,中原大學碩士論文,2003年6月。
[28] 陳揚,「大型太陽光電發電廠直流系統於不同接地架構之故障特性與保護協調研究」,國立台北科技大學碩士論文,2020年7月。
[29] 吳侑軒,「大型太陽光電發電廠直流系統雷擊特性及其對絕緣協調及保護協調之影響研究」,國立台北科技大學碩士論文,2020年7月。
[30] 鄒國彥,「地下超高壓變電所接地系統開關突波特性及其影響研究」,國立台北科技大學碩士論文,2008年6月。
[31] 劉建呅,「變電所接地方式對雷擊防護之模擬與評估」,國立臺灣科技大學碩士論文,2011年7月。
[32] 林于軒,「大型電廠屋外式氣封絕緣開關場之突波與接地故障特性分析及其影響評估」,國立台北科技大學碩士論文,2014年6月。
[33] Liu G, Guo Y, Xin Y, You L, Jiang X, Zheng M, Tang W. “Analysis of switching transients during energization in large offshore wind farms,” Energies, vol. 11, no. 2, article no. 470, Feb. 2018.
[34] S. Gholami Farkoush, A. Wadood, T. Khurshaid, C. -H. Kim, M. Irfan and S. -B. Rhee, “Reducing the effect of lightning on step and touch voltages in a grounding grid using a nature-inspired genetic algorithm with ATP-EMTP,” IEEE Access, vol. 7, pp. 81903–81910, Jun. 2019.
[35] W. Thansiphraserth, K. Supanus, A. Phayomhom, and N. Rugthaicharoencheep, ‘‘External grounding design to reduce effects of lightning damage in distribution system,’’ in Proc. 7th IET Int. Conf. Power Electron., Mach. Drives (PEMD), Manchester, UK, Apr. 2014.
[36] J.-H. Kim, S.-J. Lee, E.-S. Kim, S.-K. Kim, C.-H. Kim, and László Prikler, “Modeling of battery for EV using EMTP/ATPDraw,” J. Elect. Eng. Technol., vol. 9, no. 1, pp. 98–105, Jan. 2014.
[37] A. Parham and A. Yazdian, “EMTP model of inverter,” in Proc. 22nd Iranian Conference on Electrical Engineering (ICEE 2014), Tehran, Iran, May 2014, pp. 556–561.
[38] X. Xu, H. Han, H. Li, W. Zhou, J. Li, and N. Chen, “Modeling of photovoltaic power generation systems considering high- and low-voltage fault ride-through,” Frontiers in Energy Research, vol. 10, article no. 935156, Jun. 2022.
[39] 陳冠名,「數位鎖相迴路用於市電電壓相為偵測之三相市電併網系統研製」,國立臺灣科技大學碩士論文,2009年7月。
[40] 蔡維軒,「離案風場開關及雷擊突波特性分析及影響評估」,國立中正大學碩士論文,2015年7月。

無法下載圖示 全文公開日期 2025/06/09 (校內網路)
全文公開日期 2025/06/09 (校外網路)
全文公開日期 2025/06/09 (國家圖書館:臺灣博碩士論文系統)
QR CODE