簡易檢索 / 詳目顯示

研究生: 劉昇龍
SHENG-LONG LIU
論文名稱: 以微流分岔元件分裂液滴之探討
Study of droplet fission in bifurcating microfluidics
指導教授: 黃榮芳
Rong-Fung Huang
口試委員: 林怡均
Yi-Jiun Lin
孫珍理
Chen-Li Sun
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 125
中文關鍵詞: droplet fissiondroplet generation
外文關鍵詞: 液滴分裂, 液滴產生
相關次數: 點閱:96下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究目的為液滴分裂機制之探討,上游端利用流體聚焦技術(flow focusing technique)產生母液滴,再利用由下游端不對稱之分岔(bifurcation)微流道設計將液滴分裂成不同大小的子液滴,探討不同分岔角度及子流道流阻比下對液滴產生及分裂所造成的影響。
    研究中液滴分裂器之分岔角度共有30°、60°及180°三種不同變化,流阻比R1/R2共有0.1、0.3、0.5、0.71四種變化。當流阻比為R1/R2=0.1及R1/R2= 0.3時,由於子流道內流率比 過大,導致液滴未被分裂直接流入子流道1內。當流阻比為R1/R2=0.5,Qc/Qd由0.8 ml/min變化至2.8 ml/min時,分岔角度為60°之液滴分裂器所分裂之子液滴投影面積比A1/A2最大,30°時次之,180°時所分裂之A1/A2最小。但流阻比為R1/R2=0.71時,A1/A2隨分岔角度增加而變小。對於R1/R2=0.5及R1/R2=0.71兩種流阻比,在固定Qc/Qd時,分岔角度為180°所分裂之子液滴投影面積比A1/A2皆為最小,這是因為分岔角度為180°時,子流道流率比 最小,造成剪應變率比 較小,進而導致子液滴分裂之投影面積比A1/A2在不同流阻變化下皆為最小。
    由uPIV之分析可知,分岔角度為30°及60°時,受到子流道1內較大之體積流率的影響,導致分裂過程中液滴內靠近子流道2的相對速度皆朝向子流道1之方向流動。反之,分岔角度為180°時,由於分裂區母流道與兩子流道皆呈90°彎角,使液滴進入分裂區時,近似遇到一檔體,造成母液滴前端流速減速,使其相對而言朝液滴行進之反方向(-x方向)流動,與液滴後端之正向(x方向)相對速度在液滴中央處形成一鞍點 (saddle point)。


    This study aims at exploring the different mechanism during droplet fission in a bifurcating microfluidic. First, flow focusing technique is utilized to generate droplets, Then, an asymmetric bifurcation devices fission droplets into daughter-droplets with different sizes. In order to accurately control the proportion of splitted droplets, two key parameters, bifurcation angle and the flow resistance ratio of two daughter channels are considered. Three bifurcation angle (30°, 60°, 180°) and four flow resistance ratio (R1/R2 = 0.1, 0.3, 0.5, 0.71) are tested.
    When R1/R2 = 0.1 and 0.3, the flow rate ratio in daughter channels becomes too large such that incoming droplets pass though the wider daughter channel without fission. As R1/R2 increases to 0.5, the ratio of daughter-droplet projection area A1/A2 peaks with a bifurcation angle of 60°, following by a bifurcation angle of 30°, and a bifurcation angle of 180° produces minimal A1/A2. In contrast, A1/A2 decreases with the increase of bifurcation angles for R1/R2 = 0.71. Hence, A1/A2 reaches minimum with a bifurcation angle of 180°for R1/R2 = 0.5 and 0.71. This is because a bifurcation angle of 180° results in small ,and the corresponding strain rate ratio produces the lowest A1/A2 consequently.
    For 30° and汹60°, the 贡PIV analysis reveal that relatively fluid near the front of end of droplet move toward the wider daughter channel due to large inertia force. For 180°, on the contrary, there exists a saddle point in droplets because the 180° bifurcation forms an obstacle for the incoming droplets, causing a relative reverse flow near the front.

    摘要 Abstract 目錄 符號索引 表目錄 圖目錄 第一章 導論   1.1 前言   1.2 文獻回顧     1.2.1 液滴之產生     1.2.2 液滴之分裂   1.3 研究動機 第二章 元件製程與實驗程序   2.1 微液滴分裂器製作     2.1.1 微液滴分裂器設計     2.1.2 矽晶圓清洗     2.1.3 微影製程     2.1.4 PDMS製程   2.2 油水界面與PDMS表面特性     2.2.1 實驗設備與架構     2.2.2 油水界面張力量測     2.2.3 PDMS親疏水性測試   2.3 液滴之產生及分裂     2.3.1 實驗設備與架構     2.3.2 實驗量測程序     2.3.3 實驗分析程序   2.4 贡PIV量測系統     2.4.1 實驗設備與架構     2.4.2 實驗分析程序   2.5 不確定性分析     2.5.1 入口體積流率之相對不確定性     2.5.2 子流道體積流率之相對不確定性     2.5.3 影像分析之相對不確定性     2.5.4 液滴平均流速之相對不確定性     2.5.5 液滴體積之相對不確定性     2.5.6 液滴頻率之相對不確定性     2.5.7 界面張力之相對不確定性     2.5.8 Capillary number之相對不確定性     2.5.9 子流道出口壓力之相對不確定性 第三章 實驗結果   3.1 液滴之產生     3.1.1 液滴之大小     3.1.2 液滴之長度預測模型     3.1.3 液滴之頻率   3.2 子流道體積流率     3.2.1 分岔角度之影響     3.2.2 流阻比之影響   3.3 液滴之分裂     3.3.1 分岔角度之影響     3.3.2 流阻比之影響   3.4 子流道壓力     3.4.1 子流道出口壓力量測     3.4.2 壓力模型建立 第四章 實驗結果   4.1 液滴內速度場分析     4.1.1 分岔角度之影響     4.1.2 流阻比之影響   4.2 液滴內剪應變率分析 第五章 結論與建議   5.1 結論   5.2 建議 參考文獻

    [1]B. Zheng, J. D. Tice, and R. F. Ismagilov, "Formation of droplets of in microfluidic channels alternating composition and applications to indexing of concentrations in droplet-based assays," Analytical Chemistry, vol. 76, pp. 4977-4982, 2004.
    [2]H. Song, D. L. Chen, and R. F. Ismagilov, "Reactions in droplets in microfluidic channels," Angewandte Chemie International Edition, vol. 45, pp. 7336-7356, 2006.
    [3]M. Margulies, M. Egholm, W. E. Altman, S. Attiya, J. S. Bader, L. A. Bemben, J. Berka, M. S. Braverman, Y. J. Chen, Z. T. Chen, S. B. Dewell, A. de Winter, J. Drake, L. Du, J. M. Fierro, R. Forte, X. V. Gomes, B. C. Godwin, W. He, S. Helgesen, C. H. Ho, S. K. Hutchison, G. P. Irzyk, S. C. Jando, M. L. I. Alenquer, T. P. Jarvie, K. B. Jirage, J. B. Kim, J. R. Knight, J. R. Lanza, J. H. Leamon, W. L. Lee, S. M. Lefkowitz, M. Lei, J. Li, K. L. Lohman, H. Lu, V. B. Makhijani, K. E. McDade, M. P. McKenna, E. W. Myers, E. Nickerson, J. R. Nobile, R. Plant, B. P. Puc, M. Reifler, M. T. Ronan, G. T. Roth, G. J. Sarkis, J. F. Simons, J. W. Simpson, M. Srinivasan, K. R. Tartaro, A. Tomasz, K. A. Vogt, G. A. Volkmer, S. H. Wang, Y. Wang, M. P. Weiner, D. A. Willoughby, P. G. Yu, R. F. Begley, and J. M. Rothberg, "Genome sequencing in microfabricated high-density picolitre reactors," Nature, vol. 441, pp. 376-380, 2005.
    [4]E. Brouzes, M. Medkova, N. Savenelli, D. Marran, M. Twardowski, J. B. Hutchison, J. M. Rothberg, D. R. Link, N. Perrimon, and M. L. Samuels, "Droplet microfluidic technology for single-cell high-throughput screening," Proceedings of the National Academy of Sciences of the United States of America, vol. 106, pp. 14195-14200, 2009.
    [5]P. Garstecki, M. J. Fuerstman, H. A. Stone, and G. M. Whitesides, "Formation of droplets and bubbles in a microfluidic T-junction - scaling and mechanism of break-up," Lab on a Chip, vol. 6, pp. 437-446, 2006.
    [6]L. Yobas, S. Martens, W. L. Ong, and N. Ranganathan, "High-performance flow-focusing geometry for spontaneous generation of monodispersed droplets," Lab on a Chip, vol. 6, pp. 1073-1079, 2006.
    [7]D. R. Link, S. L. Anna, D. A. Weitz, and H. A. Stone, "Geometrically mediated breakup of drops in microfluidic devices," Physical Review Letters, vol. 92, 035303, 2004.
    [8]M. Yamada, S. Doi, H. Maenaka, M. Yasuda, and M. Seki, "Hydrodynamic control of droplet division in bifurcating microchannel and its application to particle synthesis," Journal of Colloid and Interface Science, vol. 321, pp. 401-407, 2008.

    [9]L. Menetrier-Deremble and P. Tabeling, "Droplet breakup in microfluidic junctions of arbitrary angles," Physical Review E, vol. 74,035303, 2006.
    [10]N. Rashidnia, R Balasubramaniam, Del Signore, "Interfacial tension measurement of immiscible liquids using a capillary tube, " AIChE, vol. 38, pp. 615-618, 1992.
    [11]D. Abramoff, P. Magalhaes, J. Ram, "Image Processing with ImageJ". Biophotonics International, vol 11, pp.36-42, 2004.
    [12]R. J. Goldstein, Fluid Mechanics Measurements. Washington: Hemisphere Publishing Corporation, 1983.
    [13]J. G. Santiago, S. T. Wereley, C. D. Meinhart, D. J. Beebe, and R. J. Adrian, "A particle image velocimetry system for microfluidics," Experiments in Fluids, vol. 25, pp. 316-319, 1998.
    [14] T. Cubaud and T. G. Mason, "Capillary threads and viscous droplets in square microchannels," Physics of Fluids, vol. 20, No. 5 , 2008.
    [15]J. Tan, S. W. Li, K. Wang, and G. S. Luo, "Gas liquid flow in T-junction microfluidic devices with a new perpendicular rupturing flow route," Chemical Engineering Journal, vol. 146, pp. 428-433, 2009.
    [16] M. Fuerstman, A. Lai, M. Thurlow, S. Shevkoplyas, H. Stone, and G. M. Whitesides, "The pressure drop along rectangular microchannels containing bubbles," Lab on a Chip, vol. 7, pp. 1479-1489, 2007.
    [17]I. E. Idelchik, "Handbook of hydraulic resistance", U.S. Atomic Energy Commission, 1966

    QR CODE