簡易檢索 / 詳目顯示

研究生: 林定佑
Ding-yu Lin
論文名稱: 結合光源正規化與局部特徵之稀疏表示法處理變化光源下之人臉辨識
Illumination Normalized and Component Oriented Sparse Representation for Illumination Invariant Face Recognition
指導教授: 徐繼聖
Gee-Sern Hsu
口試委員: 洪一平
Yi-Ping Hung
莊永裕
Yung-Yu Chuang
郭景明
Jing-Ming Guo
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 77
中文關鍵詞: 稀疏表示法光源正規化局部特徵
外文關鍵詞: Sparse Representation, Illumination Normalization, Component Features
相關次數: 點閱:224下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文首次應用光源正規化(Illumination Normalization)及局部特徵(Component Features)改進稀疏表示法(Sparse Representation) 之人臉辨識,並稱所提出的方法為INCO(Illumination-Normalized and Component-Oriented)稀疏表示法。不同於目前的稀疏表示法藉由多樣性的訓練樣本建立所需的線性基底,INCO 稀疏表示法先將訓練樣本進行光源正規化,再透過局部特徵的擷取,增強線性基底對於變化光源的穩健度。為結合局部(Component)與全域(Holistic)特徵,本研究提出了兩層式(Bilayer)和晶格式切割(Dense-on-Features)的結合方式並評估其效益,也比較了多種光源正規化的機制,不同的局部區塊,不同的影像特徵與特徵抽取之相關參數,結論出INCO稀疏表法之最佳系統架構與參數設置。透過不同標準資料庫(FERET、FRGC、Multi-PIE)與目前較佳之人臉辨識方法進行效能評比,本研究證實所提出之方法具有高度競爭力。


We merge illumination normalization and component features into the framework of
Sparse Representation-based Classification (SRC) for face recognition across illumination, and name it Illumination-Normalized and Component-Oriented (INCO) SRC. Unlike most SRC-based face recognition which constructs a dictionary from a training set with sufficient illumination variation, the proposed method first adopts a dictionary with illumination normalized training set and then extract the component features. For further improving the performance, we propose two combination schemes, Bilayer and Dense-on-Features, to combine component feature with holistic feature. We also compare different illumination normalizations, local region, and feature extraction to obtain the optimal setting to construct the framework of INCO-SRC. Experiments on FERET, FRGC and Multi-PIE databases show that the performance of the proposed method can be competitive to the state of the art.

中文摘要 i 英文摘要 ii 誌謝 iii 目錄 iv 圖目錄 vii 表目錄 x 演算法目錄 xii 1 介紹 1 1.1 緒論與研究動機 1 1.1.1 光源正規化 2 1.1.2 局部特徵的選取 3 1.1.3 分類器選取 4 1.1.4 研究動機 4 1.2 方法概述 5 1.3 論文貢獻 6 1.4 論文架構 6 2 文獻回顧 8 2.1 光源正規化相關理論 8 2.1.1 The Tan and Triggs Normalization Technique 8 2.1.2 The Gaussian filtering and Weber local descriptor 12 2.1.3 The Adaptive Retinex Normalization Technique 14 2.2 特徵擷取 17 2.2.1 賈伯濾波器(Gabor Filter) 17 2.2.2 局部二值化模式(Local Binary Pattern) 19 2.3 局部特徵相關方法 20 3 主要方法與流程 22 3.1 稀疏表示法(Sparse Representation-based Classification) 22 3.1.1 方法介紹 23 3.1.2 展延式稀疏表示法 25 3.2 光源正規化與局部特徵導向之稀疏表示法 27 3.2.1 兩層式稀疏表示法 28 3.2.2 晶格式稀疏表示法 30 4 實驗設置與分析 33 4.1 標準資料庫介紹 33 4.1.1 FERET 介紹 33 4.1.2 Multi-PIE 介紹 34 4.1.3 FRGC 介紹 36 4.2 樣本之規格 37 4.3 實驗設計 38 4.4 實驗結果與分析 39 4.4.1 不同特徵擷取法之參數設定 39 4.4.2 光源正規化之影響 40 4.4.3 局部特徵之測試 43 4.4.4 相關文獻效能比較 45 5 即時系統製作與效能評估 52 5.1 系統架構 52 6 結論與未來研究方向 54 參考文獻 55 附錄一:INFace Toolbox 58

[1] A. J. K. Bonnen, B.F. Klare, "Component-based representation in automated face recognition," Information Forensics and Security, IEEE Trans. on, vol. 8, p. 239–253, Jan. 2013.
[2] J. G. W. Deng, J. Hu, "Extended src : Undersampled face recognition via intraclass variant dictionary," PAMI, IEEE Trans. on, vol. 34, p. 1864–1870, Sept. 2012.
[3] A. Wagner, J. Wright, A. Ganesh, H. Mobahi, Z. Zhou, and Y. Ma, "Towards a
practical face recognition system: Robust registration and illumination by sparse representation," PAMI, IEEE Trans. on, vol. 34, p. 372–386, Feb. 2012.
[4] X. Tan and B. Triggs, "Enhanced local texture feature sets for face recognition under difficult lighting conditions," Image Processing, IEEE Trans. on, vol. 19, p. 1635–1650, June 2010.
[5] J. H. P. Belhumeur and D. Kriegman, "Eigenfaces vs fisherfaces:recognition using class specific linear projection," PAMI, IEEE Trans. on, vol. 19, p. 711–720, July 1997.
[6] W. Y. B. Wang, W. Li and Q. Liao, "Illumination normalization based on weber's law with application to face recognition," Signal Processing Letters, vol. 18, p. 462–465, Aug. 2011.
[7] J. K. Y.K. Park, S.L. Park, "Retinex method based on adaptive smoothing for illumination invariant face recognition," Signal Processing, vol. 88, p. 1929–1945, 2008.
[8] P. Phillips, P. Flynn, T. Scruggs, K. Bowyer, J. Chang, K. Hoffman, J. Marques, J. Min, and W. Worek, "Overview of the face recognition grand challenge," CVPR, vol. 1, p. 947–954, June 2005.
[9] Z. R. D. Jobson and G. Woodell, "A multiscale retinex for bridging the gap between color images and the human observation of scenes," Image Processing, IEEE Trans. on, vol. 6, p. 965–976, July 1997.
[10] T. Sim, S. Baker, and M. Bsat, "The cmu pose, illumination, and expression
database," PAMI, IEEE Trans. on, vol. 25, p. 1615–1618, Dec. 2003.
[11] "INFace Toolbox." http://luks.fe.uni-lj.si/sl/osebje/vitomir/face_
tools/INFace/refs.html.
[12] J. Zou, Q. Ji, and G. Nagy, "A comparative study of local matching approach for face recognition about," Image Processing, IEEE Trans. on, vol. 16, p. 2617–2628, Oct. 2007.
[13] A. G. J. Wright, A.Y. Yang, S. Sastry, and Y. Ma, "Robust face recognition via sparse representation," PAMI, IEEE Trans. on, vol. 31, p. 210–227, Feb. 2009.
[14] P. Phillips, H. Moon, P. Rizvi, and P. Rauss, "The feret evaluation method for face recognition algorithms," PAMI, IEEE Trans. on, vol. 22, p. 1090–1104, Oct. 2000.
[15] Y. O. P. Sinha, B. Balas and R. Russell, "Face recognition by humans: Nineteen results all computer vision researchers should know about," Proceedings, vol. 94, p. 1948–1962, Nov. 2006.
[16] X. Yong, D. Zhang, J. Yang, and J.-Y. Yang, "A two-phase test sample sparse representation method for use with face recognition," Circuits and Systems for Video Technology, IEEE Trans. on, vol. 21, p. 1255–1262, Sept. 2011.
[17] A. Y. Yang, S. S. Sastry, A. Ganesh, and Y. Ma, "Fast l1-minimization algorithms and an application in robust face recognition: A review," in ICIP, p. 1849–1852, 2010.
[18] N. Vu and A. Caplier, "Enhanced patterns of oriented edge magnitudes for face recognition and image matching," Image Processing, IEEE Trans. on, vol. 21, p. 1352–1365, Mar. 2012.
[19] J. Yang, K. Yu, and T. Huang, "Supervised translation-invariant sparse coding," CVPR, p. 3517–3524, June 2010.
[20] C. H. Chan, J. K. M. A. Tahir, and M. Pietikainen, "Multiscale local phase quantization for robust component-based face recognition using kernel fusion of multiple descriptors," PAMI, IEEE Trans. on, vol. 35, p. 1164–1177, May 2013.
[21] Y. Su, S. Shan, X. Chen, and W. Gao, "Hierarchical ensemble of global and local classifiers for face recognition," Image Processing, IEEE Trans. on, vol. 18, no. 8, p. 1885–1896, 2009.
[22] P. Lee, S. Wu, and Y.-P. Hung, "Illumination compensation using oriented local histogram equalization and its application to face recognition," Image Processing, IEEE Trans. on, vol. 21, no. 9, p. 4280–4289, 2012.
[23] T. Cootes, C. Tayler, and D. Cooper, "Active shape models—their training and application," Comput. Vis. Image Understand., vol. 61, p. 38–59, 1995.

QR CODE