簡易檢索 / 詳目顯示

研究生: 葉家齊
Chia-chi Yeh
論文名稱: 新式互補式金氧半壓控振盪器與串聯共振注入鎖定除頻器
Design of Novel CMOS Voltage Controlled Oscillator and Series-Tuned Cross-Coupled Injection-Locked Frequency Divider
指導教授: 徐敬文
Ching-wen Hsue
張勝良
Sheng-lyang Jang
口試委員: 馮武雄
Wu-shiung Feng
鄧恆發
Heng-fa Teng
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 100
中文關鍵詞: 壓控振盪器注入鎖定除頻器
外文關鍵詞: VCO, ILFD
相關次數: 點閱:228下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

無線通訊系統在現代社會中快速的成長,其要求高速度以及極小誤差的情況下,PLL的特性將會是其要求的重點,PLL中包含相位比較器、迴路濾波器、壓控振盪器、除頻器等,其中又以壓控振盪器為最重要的部分,要求在低功耗中有著低相位雜訊以及較寬工作範圍的特性,並由FOM定義其特性的好壞。
首先,學生提出以兩個單端互補考畢子LC共振電路加上PMOSFET叉耦合的VCO,在2.3V電源電壓,其輸出為7.1GHz的載波頻率,在1 MHz偏移頻率相位雜訊為-126.72 dBc / Hz,以及FOM數值為-192.13 dBc / Hz。 VCO之總消耗功率為14.5毫瓦。可調範圍約450MHz,從6.8至7.25 GHz,以0 V調整至2 V.
其次,是一種高性能CMOS控制開關的電壓控制振盪器,其提供同相及反相的輸出。架構為兩組電容環和四個交叉耦合器的VCO組成。 NMOSFET的開關用於切換高、低頻段以及產生同相及反相的輸出。隨著開關的切換,偶模將工作於高頻段而奇模工作在低頻段。在正交模式中提供四相位的輸出。它可以產生6.13至6.8 GHz和3.97至4.2 GHz的頻率範圍內的同相及反相信號,以及可以產生正交信號頻率範圍在4.08-4.28GHz,電源電壓在1V,總核心功耗為20mW。
最後為新式串聯調整注入鎖定除頻器,此除頻器架構為串聯共振並直接注入外部訊號,在1V電源電壓,其除頻器在未注入時可調範圍為8.06到8.32GHz注入0dBm之外部訊號後,其鎖定範圍大約為3.4GHz(21.25%),注入頻率從14.3到17.7GHz。


The important blocks in the phase locked loop (PLL) are the voltage controlled oscillator (VCO) and the divider circuit. The most power consumption of PLL consumes in VCO and divider. The VCO is requested a low phase-noise to avoid corrupting the mixer-converted signal by close interfering tones for VCO circuit, and the Figureure of Merit (FOM) of VCO can be determined by it’s performance.
First, the studied circuit is a two single-ended complementary Colpitts LC-tank VCOs coupled by a pair of p-core cross-coupled MOSFETs. The output phase noise of the VCO is -126.72 dBc/Hz at 1 MHz offset frequency from the carrier frequency of 7.1 GHz, and the figure of merit is -192.13 dBc/Hz. Total VCO core power consumption is 14.5 mW. Tuning range is about 450 MHz, from 6.8 to 7.25 GHz, while the control voltage was tuned from 0 V to 2 V. At the supply voltage of 2.3 V.
Second, the studied circuit is a high-performance CMOS voltage-controlled oscillator (VCO), with switch controls to provide differential and quadrature outputs. The VCO consists of four cross-coupled VCOs coupled by a pair of capacitor-rings. NMOSFET switches are used to switch high- and low-frequency bands and generate differential or quadrature outputs. With the switched resonator, the differential even mode VCO operates at the high-band and the differential odd mode VCO operates at the low-band.The quadrature mode VCO provide quadrature outputs. It can generate differential signals in the frequency range of 6.13-6.8 GHz and 3.97-4.2 GHz, and it can generate quadrature signals in the frequency range of 4.08-4.28GHz. At the supply voltage of 1 V, total VCO core power consumption is 20 mW.
Finally, a new series-tuned cross-coupled injection-locked frequency divider (ILFD) is studied. The ILFD is based on a differential series-tuned cross-coupled VCO with a direct injection MOSFETs for coupling external signal to the resonator. Measurement results show that at the supply voltage of 1.0 V, the prototype divider’s free-running frequency is tunable from 8.06GHz to 8.32 GHz, and at the incident power of 0 dBm the locking range is about 3.4 GHz (21.25%), from the incident frequency 14.3 to 17.7 GHz.

中文摘要 I Abstract III 致謝 V Table of Contents VI List of Figures VIII List of Tables XI Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Thesis Organization 4 Chapter 2 Overview of the Voltage-Controlled Oscillators 5 2.1 Introduction 5 2.2 Basic Theory of Oscillators 7 2.2.1 Two-Port (Feedback) View 7 2.2.2 One-Port (Negative Resistance) View 9 2.3 Design Considerations of Voltage Controlled Oscillator 13 2.4 Parallel RLC Tank 17 2.4.1 Quality Factor 18 2.4.2 Inductor Design 21 2.4.3 Transformer Design 27 2.4.4 Varactor Design 36 2.5 The Popular Resonator 42 2.5.1 Single Transistor Oscillator 43 2.5.2 Cross-Coupled Oscillator 46 2.5.3 Complementary Cross-Coupled Topology 47 2.6 Phase Noise 50 2.6.1 Defination of The Phase Noise 50 2.6.2 Power and FOM 55 Chapter 3 Design of Injection Locked Frequency Divider 56 3.1 Principle of Injection Locked Frequency Divider 57 3.1.1 Locking Range 59 Chapter 4 A 7 GHz Cross-Coupled Complementary Colpitts VCO in 0.35μm CMOS 62 4.1 Introduction 62 4.2 Circuit Design of Colpitts VCO 63 4.3 Measurement Results And Discussions 66 Chapter 5 Generation of Differential and Quadrature Signals Based on Switching in VCO 70 5.1 Introduction 70 5.2 Circuit Design Of QVCO 72 5.3 Measurement Results And Discussions 76 Chapter 6 A Wide-locking Range Series-Tuned Cross-Coupled Injection-Locked Frequency Divider 83 6.1 Introduction 83 6.2 Circuit Design Of ILFD 85 6.3 Measurement Results And Discussions 89 Conclusion 93 References 95

[1] J. Roggers, C. Plett, Radio frequency integrated circuit design, Artech House, 2003
[2] S. Smith, “Microelectronic Circuit 4th edition,” Oxford University Press 1998.
[3] J. Aguilera, and R. Berenguer, “Design and test of integrated inductors for RF applications”, Kluwer Academic Publishers, 2004.
[4] J. Craninckx, and M. S. J. Steyaert, “A fully integrated CMOS DCS-1800 frequency synthesizer,” IEEE J. Solid-State Circuits, vol. 33, no. 12, pp. 2054-2065, 1998..
[5] Y. K. Koutsoyannopoulos, and Y. Papananos, “Systematic analysis and modeling of integrated inductors and transformers in RF IC design,” IEEE Trans. Circuits and System-II, vol. 47, no. 8, pp. 699-713, 2000.
[6] A . Zolfaghari, A. Chan, and B. Razavi, “Stacked inductors and transformers in CMOS technology,” IEEE J. Solid-State Circuits, vol. 36, no. 4, pp. 620-628, 2001.
[7] Y. Koutsoyannopoulos, “Novel Si integrated inductor and transformer structure for RF IC design,” Proc. ISCAS ‘99, vol. 2, pp. 573.576, 1999.
[8] C. Tang, C. Wu, and S. Liu, “Miniature 3-D inductors in standard CMOS process,” IEEE J. Solid-State Circuits, vol. 37, no. 4, pp. 471-480, 2002
[9] H. M. Greenhouse, “Design of planar rectangular microelectronic inductors,” IEEE Trans. on Parts, Hybrids and Packaging, vol. PHP-10, no.2, pp. 101-109,, 1974.
[10] P. Andreani, S. Mattisson, “On the use of MOS varactors in RF VCO’s,” IEEE J. Solid-State Circuits, vol. 35, pp. 905-910, 2000.
[11] J. R. Long, “Monolithic transformers for silicon RF IC design,” IEEE J. olid-State Circuits, vol. 35, pp. 1368-1382, Sept. 2000.
[12] E. Frlan, S. Meszaros, M. Cuhaci, and J.Wight, “Computer-aided design of square spiral transformers and inductors,” IEEE MTT-S, Microwave Symposium Digest, pp. 661-664, June 1989.
[13] M. W. Geen, G. J. Green, R.G. Arnold, J. A. Jenkins, and R. H. Jansen, Miniature multilayer spiral inductors for GaAs MMICs,” Gallium Arsenide Integrated Circuit (GaAs IC) Symposium, pp. 303-306, Oct. 1989.
[14] A. Kiranas and Y. Papanaos, “Design issues towards the integration of passive components in silicon RF VCOs,” IEEE International Conference on Electronics, Circuits and Systems, vol. 2, pp. 311-314, Sept. 1998.
[15] P. Andreani, and S. Mattisson, “On the use of MOS varactors in RF VCOs,” IEEE J. Solid-State Circuits, vol. 35, no. 6, pp. 905-910, June 2000.
[16] A. Hajimiri, and T. H. Lee, The design of low noise oscillators, Kluwer Academic Publishers, 1999.
[17] B. De Muer, M. Borremans, M. Steyaert, and G. Li Puma, “A 2-GHz low-phase-noise integrated LC-VCO set with flicker-noise upconversion minimization,” IEEE J. Solid-State Circuits, vol. 35, pp. 1034-1038, 2000..
[18] S . Levantino, C. Samori, A. Bonfanti, S.L.J. Gierkink, A.L. Lacaita, and V. Boccuzzi, “Frequency dependence on bias current in 5 GHz CMOS VCOs: impact on tuning range and flicker noise upconversion,” IEEE J. Solid-State Circuits, vol. 37, pp. 1003.1011, 2002.
[19] T. Lee and A. Hajimiri, “Oscillator phase noise: a tutorial,” IEEE J. Solid-State Circuits, vol. 35, no. 3, pp. 326-336, Mar. 2000.
[20] D. Leeson, “A simple model of feedback oscillator noise spectrum,” Proceedings of the IEEE, vol. 54, pp. 329-330, Feb. 1966.
[21] A. Hajimiri and T. H. Lee, “Design issues in CMOS differential LC oscillators,” IEEE J. Solid-State Circuits, vol. 34, pp. 717-724, May 1999.
[22] A. Hajimiri and T. Lee, “Design issues in CMOS differential LC oscillators,” IEEE J. Solid-State Circuits, vol. 34, no. 5, pp. 717–724, May 1999.
[23] R. Aparicio and A. Hajimiri, “A noise-shifting differential ColpittsVCO,” IEEE J. Solid-State Circuits, vol. 12, no. 12, pp. 1728–1736, Dec.2002.
[24] X. Li, S. Shekhar, D. J. Allstot, “ Gm-boosted common-gate LNA and differential Colpitts VCO/QVCO in 0.18-μm CMOS,” IEEE J. of Solid-State Circuits, vol. 40, no. 12, Dec. 2005.
[25] S.-H. Lee, Y.-H. Chuang, S.-L. Jang and C.-C. Chen, ” Low-phase noise Hartley differential CMOS voltage controlled oscillator,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 2, pp. 145-147, Feb. 2007.
[26] Y.-H. Chuang, S.-L. Jang, S.-H. Lee, R.-H. Yen, and J.-J.Jhao, “5-GHz low power current-reused balanced CMOS differential Armstrong VCOs,” IEEE Microw. Wireless Compon. Lett., vol. 17, no.2, pp. 139-141, Feb. 2007.
[27] S.-L. Jang, Y.-J. Song, and C.-C. Liu, ” A differential Clapp VCO in 0.13μm CMOS technology, ” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 6, pp. 404–406, June 2009.
[28] S.-L. Jang, C.-C. Liu, Y.-J. Song, and M.-H. Juang , ”A low voltage balanced Clapp VCO in 0.13 μm CMOS Technology,” Microwave and optical technology Lett., vol. 52, no. 7, pp. 1623–1625, July 2010.
[29] S.-H. Li, S.-L. Jang, Y.-S. Chuang and C.-F. Li, “A new LC-tank voltage controlled oscillator,” in IEEE Asia-Pacific Cir. Syst. Conf., Dec. 2004, pp. 425–427.
[30] S.-L. Jang, C.-Y. Wu, C.-C. Liu, and M.-H. Juang, ” A 5.6GHz low power balanced VCO in 0.18 μm CMOS,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 4, pp. 233-235, April, 2009.
[31] P. Kinget, “A fully integrated 2.7V 0.35 μm CMOS VCO for 5GHz Wireless Applications,” in Proc. ISSCC, 1998, pp. 226-227.
[32] Y.-B. Choi, T.-H. Teo, and H. Liao, “Symmetrical spiral inductor design and optimization for VCO design in 0.35 μm CMOS technology,” in Proc IEEE Int. Conf. ASIC, vol. 2, 2003, pp. 1066–1069.
[33] T. P. Liu, “ A 6.5 GHz monolithic CMOS voltage-controlled oscillator,” in Proc. ISSCC, 1999, pp. 404-405.
[34] C. Lam and B. Razavi, “A 2.6-GHz/5.2-GHz CMOS voltage-controlled oscillator,” in Proc. ISSCC, 1999, pp. 402-403.
[35] C.-Y. Cha and S.-G. Lee “A complementary Colpitts oscillator in CMOS t echnology,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 3, pp. 881 -
887, Mar. 2005.
[36] T. N. Nguyen and J.-W. Lee, “Low phase noise differential vackar VCO in 0.18 μm CMOS technology,” IEEE Microwave Wireless Compon. Lett., vol. 20, no 2, pp. 88-90, Feb. 2010.
[37] J. Park, J. Park, Y. Choi, K. Sim, and D. Baek, “A fully-differential complementary Hartley VCO in 0.18 μm CMOS technology,” IEEE Microwave Wireless Compon. Lett., vol. 20, no 2, pp. 91-93, Feb. 2010
[38] S.-L. Jang, W.-C. Liu, C.-W. Chang and J.-F. Huang,” A 0.35 μm CMOS cross-coupled complementary Colpitts voltage controlled oscillator,” Microwave and Optical Technology Lett., vol. 53, no. 9, pp.2189-2192, Sept., 2011.
[40] A. Kral, F. Behbahani, and A. A. Abidi, “RF-CMOS oscillators with switched tuning,” in Proc. IEEE Custom Integr. Circuits Conf., Sep. 1998, pp. 555–558.
[41] J. Kim, J. Shin, S. Kim, and H. Shin, “A wide-band CMOS LC VCO with linearized coarse tuning characteristics,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 55, no. 5, pp. 399–430, May 2008.
[42] M. Tiebout, “A CMOS fully integrated 1 GHz and 2 GHz dual-band VCO with a voltage controlled inductor,” in Proc. Eur. Solid-State Circuits Conf. (ESSCIRC), Florence, Italy, Sep. 2002, pp. 799–802.
[43] S.-M. Yim and K. K. O, “Switched resonators and their applications in a dual-band monolithic CMOS LC-tuned VCO,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 1, pp. 74–81, Jan. 2006.
[44] A. Italia, C. M. Ippolito, and G. Palmisano “A 1-mW 1.13–1.9 GHz CMOS LC VCO using shunt-connected switched-coupled inductors,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 59, pp. 1145–1155, Jun. 2012.
[45] D. Baek, J. Kim and S. Hong “A dual-band (13/22-GHz) VCO based on resonant mode switching,” IEEE Microw. Wireless Compon. Lett., vol. 13, No. 10, pp.443-445, Oct. 2003.
[46] Z. Safarian and H. Hashemi, “Wideband multi-mode VCO design using coupled inductors”, IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 56, pp. 1830–1843, Aug. 2009.
[47] G. Li, and E. Afshari, “A distributed dual-band LC oscillator based on mode switching,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 1, pp. 99–107, Jan. 2011.
[48] S.-L. Jang, Y.-K. Wu, C.-C. Liu and J.-F. Huang, ” A dual-band CMOS voltage-controlled oscillator implemented with dual-resonance LC tank,” IEEE Microw. Wireless Compon. Lett., vol. 19, No. 12, pp.816-818, Dec. 2009. Page 3 of 3
[49] I-Shing Shen, Tze-Che Huang, and Christina F. Jou “A low phase noise quadrature VCO using symmetrical tail current-shaping technique” IEEE Microwave and Wireless Components Letters Vol,20 ,no.7 ,pp 399 - 401, July 2010
[50] C.-Y Jeong, C.- Yoo, “5-GHz low-phase noise CMOS quadrature VCO ” IEEE Microwave and Wireless Components Letters, Vol,16 ,no.11 ,pp.609 - 611, Nov. 2006
[51] J. H. Chang and C. K. Kim, “A symmetrical 6-GHz fully integrated cascode coupling CMOS LC quadrature VCO,” IEEE Microw.Wireless Compon. Lett., vol. 15, no. 10, pp. 670–672, Oct. 2005.
[52] I.-R. Chamas, and S. Raman, “Analysis and design of a CMOS phase-tunable injection-coupled LC quadrature VCO (PTIC-QVCO),” IEEE J. Solid-State Circuits, vol. 44, no. 3, pp. 784 – 796, Jul. 2009.
[53] K.W Kim, Ho-Jun Chang, Young-Min Kim, and Tae-Yeoul Yun,, “A 5.8 GHz low-phase-noise LC-QVCO using splitting switched biasing technique,” IEEE Microw. Wireless Compon. Lett., Vol. 20, no. 6, pp.337-339, June. 2010.
[54] H. Wu and A. Hajimiri, “A 19 GHz 0.5 mW 0.35 μm CMOS frequency divider with shunt-peaking locking-range enhancement,” in IEEE ISSCC Dig.Tech. Papers, Feb. 2001, pp. 412-413.
[55] H. R. Rategh and T. H. Lee, “Superharmonic injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 34, no. 6, pp. 813–821, June 1999.
[56] Li-Te Chou, J.-F. Huang, and S.-L. Jang,” Wide-band divide-by-2 quadrature injection-locked frequency dividers with large output voltage swing,” in press, Micro. and Opti. Tech. Lett., 2012.
[57] M. Tiebout, “A CMOS direct injection-locked oscillator topology as high-frequency low-power frequency divider,” IEEE J. Solid-State Circuits, vol. 39, no. 7, pp. 1170 – 1174, July 2004.
[58] Y.-H. Chuang, S.-H. Lee, R.-H. Yen, S.-L. Jang, J.-F. Lee and M.-H. Juang, “A wide locking range and low voltage CMOS direct injection-locked frequency divider,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 5, pp. 299-301, May 2006.
[59] T. Ohira, ” Extended Adler's injection locked Q factor formula for general one- and two-port active device oscillators,” IEICE Electronics Express, Vol. 7, No.19, 1486–1492. 2010
[60] S.-L. Jang, J.-F. Huang, C.-W. Chang,” Phase noise formula for dual-resonance injection locked frequency dividers,” in press, Micro. and Opt. Tech. Lett., 2012.
[61] S.-L. Jang, C.-C. Shih, C.-W. Chang, C.-C. Liu, and J.-F. Huang, ” A dual-band divide-by-2 injection locked frequency divider in 0.35 μm SiGe BiCMOS,” Microwave and Optical Technology Lett., pp.2762-2765, Dec., 2010.
[62] S.-L Jang, C.-C Shih, C.-C Liu, and M.-H Juang, ” CMOS Injection-Locked Frequency Divider with Two Series-LC Resonators,” Microwave and Optical Technology Lett., pp.290-293, Feb., 2011
[63] J. Craninckx and M. S. J. Steyaert, “A 1.75-GHz/3-V dual-modulus divide-by-128/ 129 prescaler in 0.7 um CMOS,” IEEE J. Solid-State Circuits, vol. 31, pp. 890-897, July 1996.
[64] Q. Huang and R. Rogenmoser, “Speed optimization of edge-triggered CMOS circuits for gigahertz single-phase clocks,” IEEE J. Solid-State Circuits, vol. 31, pp. 456-463, Mar. 1996.
[65] J. Lee and B. Razavi, “A 40 GHz frequency divider in 0.18-μm CMOS technology,” IEEE J. Solid-State Circuits, vol. 39, pp. 594-601, Apr. 2004.
[66] H. R. Rategh, and T.H. Lee, “Superharmonic injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 34, pp. 813-821, June 1999.
[67] H. Wu, and A. Hajimiri, “A 19 GHz 0.5 mW 0.35 μm CMOS frequency divider with shunt-peaking locking-range enhancement,” IEEE ISSCC Dig. Tech. Papers, pp. 412-413, Feb. 2001.
[68] H. D. Wohlmuth and D. Kehrer, “A high sensitivity static 2:1 frequency divider up to 27 GHz in 120 nm CMOS,” IEEE European Solid State Circuits Conference (ESSCIRC), pp. 823-826, Sept. 2002.
[69] R. J. Betancourt-Zamora, S. Verma, and T. H. Lee, “1 GHz and 2.8 GHz CMOS
injection- locked ring oscillator prescalers,” IEEE Symposium on VLSI Circuits, pp. 47-50, June 2001.
[70] P. Kinget, R. Melville, D. Long, and V. Gopinathan, “An injection locking scheme for precision quadrature generation,” IEEE J. Solid-State Circuits, vol. 37, pp. 845-851, July 2002.
[71] W. Z. Chen, and C. L. Kuo, “18 GHz and 7 GHz superharmonic injection-locked
dividers in 0.25μm CMOS technology,” IEEE European Solid State Circuits Conference (ESSCIRC), pp. 89-92, Sept. 2002.
[72] H. Wu, “Signal generation and processing in high-frequency/high-speed siliconbased integrated circuits,” PhD thesis, California Institute of Technology, 2003.
[73] R. Adler, “A study of locking phenomena in oscillators,” Proc. IEEE, vol. 61, pp.1380-1385, Oct. 1973.
[74] A. Hajimiri and T. H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuits, vol. 33, no. 2, pp. 179-194, Feb. 1998.

無法下載圖示 全文公開日期 2017/07/26 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE