簡易檢索 / 詳目顯示

研究生: 張苑芝
Yuan-Chih Chang
論文名稱: 開發鋰離子電池之多孔性與高熱穩定性 聚醯亞胺隔離膜
Development of a highly porous and thermal stable polyimide separator for lithium-ion batteries
指導教授: 吳溪煌
She-Huang Wu
黃炳照
Bing-Joe Hwang
蘇威年
Wei-Nien Su
口試委員: 黃炳照
Bing-Joe Hwang
吳溪煌
She-Huang Wu
蘇威年
Wei-Nien Su
姚松廷
Song-Ting Yao
葉昀昇
Yun-Shen Ye
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 108
中文關鍵詞: 鋰離子電池聚醯亞胺隔離膜非溶劑誘導相轉移克伏拉纖維
外文關鍵詞: lithium-ion battery, polyimide, separator, nonsolvent inversion phase separation, Kevlar fibe
相關次數: 點閱:203下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究以簡易的非溶劑誘導相轉移的方式製成多孔性和高熱穩定性的聚醯亞胺隔離膜,為讓隔離膜保有一定的機械因此以高固含量的PAA溶液(20 wt%)作為澆鑄溶液,同時探究出以具有孔洞的隔膜(Celgard2325)作為新型刮塗基材以解決底面無法生成孔洞的問題。並嘗試以添加具有大量氫鍵及醯胺官能基的克伏拉纖維的方式以不影響結構穩定性的方式進行表面改質,同步改善部分孔洞問題。
所製備出的聚醯亞胺隔離膜與Celgard 2325隔離膜相比具有優異的熱穩定性、高達66.4 %孔隙率、在電解液吸附量上更達178.8 %及穩定的電化學穩定性。經過改質的隔離膜在潤濕性上的表現更加提升,尤其是在電化學穩定性上更為明顯,在LiPF6 (in EC/DEC=1:1, V/V) LFP/Li 的系統中以0.5C的充放電條件下進行長圈數循環充放電,歸因於多孔性的結構及高潤濕性的特性在經過40圈的循環下仍有98.7 %的庫倫效率及99.9 %的電容保持率。


A high porous and high thermal stable polyimide separator has been successfully prepare by nonsolvent inversion phase separation process.In the study, we used the Celgard 2325 membrane as a casting substrate to solve the issue where the high solid content slurry is hard to form a porous structure. In addition, we added Kevlar fiber, which has many hydrogen bonds and amide functional groups, to modify and solve some structure problems.
The PI separator has shown excellent properties for lithium ion batteries. Compared with the commercial Celgard 2325 separator, our PI separator shows excellent thermal stability, up to 66.4 % high porosity, and 178.8 % in electrolye uptake and stable electrochemical performance.The modified one, Kevlar/PI separator, exhibits better wettability and excellent electrochemical performance than PI.The battery coin cell assembled with Kevlar/PI in LiPF6 (in EC/DEC=1:1, V/V) LFP/Li system and using 0.5 C for long charge and discharge cycles.The cell shows the excellent performance. After 40 cycle it still has coulombic efficiency of 98.7 % and 99.9 % retention capacity.

摘要 I Abscract II 致謝 III 目錄 V 圖目錄 VIII 表目錄 XII 第1章 緒論 1 1.1 前言 1 1.2 鋰離子電池 2 1.3 鋰離子電池反應機制和組成 3 1.3.1 鋰離子電池的反應原理 3 1.3.2 電池組成 4 1.4 隔離膜特性需求 7 1.4.1 機械性質 1 1.4.2 厚度 1 1.4.3 熱與尺寸穩定性 1 1.4.4 孔隙度、孔洞分布 2 1.4.5 潤濕性 2 1.4.6 離子傳導率 3 1.4.7 化學及電化學穩定性 4 1.5 隔離膜的種類及製造方式 5 1.5.1 隔離膜種類 5 1.5.2 隔離膜的製程工藝 6 1.5.3 傳統商用隔離膜的困境 9 1.6 聚醯亞胺(PI)隔離膜 10 1.6.1 聚醯亞胺特色 10 1.6.2 選擇聚醯亞胺作為隔離膜 11 1.7 研究動機及目的 12 第2章 文獻回顧 13 2.1 製備多孔性隔離膜的方法 13 2.1.1 靜電紡絲 13 2.1.2 非溶劑誘導相轉移分離 (NIPS) 16 2.1.3 犧牲模板法 17 2.1.4 相分離微成型技術 21 2.2 影響非溶劑誘導相轉移製程多孔隔離膜的因素 23 2.2.1 非溶劑凝固浴的選擇 23 2.2.2 高分子濃度的選擇 25 2.2.3 溫度的選擇 26 2.3 多孔性隔離膜改質 29 2.4 克伏拉纖維之特性 36 第3章 實驗方法與設備 40 3.1 實驗藥品 40 3.2 實驗設備 42 3.3 實驗步驟 43 3.3.1 製備聚醯亞胺溶液 43 3.3.2 製備克夫拉纖維 43 3.3.1 製備聚醯亞胺混合克夫拉纖維溶液 44 3.3.2 製備聚醯亞胺隔離膜 46 3.4 材料鑑定、分析與原理 48 3.4.1 傅立葉紅外線光譜儀 (FTIR) 48 3.4.2 掃描式電子顯微鏡 (FE-SEM) 48 3.4.3 拉力試驗機(Tensile testing) 49 3.4.4 接觸角(Contact angle) 49 3.5 電化學性質測試 50 第4章 結果與討論 52 4.1 聚醯亞胺薄膜製程之探討 52 4.1.1 以玻璃為基板之薄膜形貌分析 52 4.1.2 以玻璃為基板之薄膜物性比較 54 4.2 以Celgard2325為基板製模 55 4.2.1 以Celgard2325為基板之薄膜形貌分析 56 4.2.2 以Celgard2325為基板之薄膜物性比較 57 4.3 聚醯亞胺隔離膜之探討 58 4.3.1 傅立葉轉換紅外線光譜結構鑑定 58 4.3.2 膜形貌分析 59 4.3.3 膜熱穩定性質 61 4.3.4 膜之機械拉伸性質 63 4.3.5 膜之孔隙率及潤濕性 64 4.3.6 膜的阻抗、離子電導率及界面阻抗 67 4.3.7 小結 69 4.4 聚醯亞胺隔離膜改質之探討-克伏拉/聚醯亞胺隔離膜 70 4.4.1 膜的形貌分析 70 4.4.2 膜熱穩定性質 71 4.4.3 膜之機械拉伸性質 73 4.4.4 膜之孔隙率及潤濕性 74 4.4.5 膜的阻抗、離子電導率及界面阻抗 75 4.4.6 鋰離子電導率 77 4.4.7 小結 79 4.5 電池效能分析 80 第5章 結論 82 第6章 未來展望 83 參考文獻 84

1. Whittingham, M. S., Electrical energy storage and intercalation chemistry. Science 1976, 192 (4244), 1126-1127.
2. Mizushima, K.; Jones, P.; Wiseman, P.; Goodenough, J. B., LixCoO2 (0< x<-1): A new cathode material for batteries of high energy density. Materials Research Bulletin 1980, 15 (6), 783-789.
3. Zaghib, K.; Song, X.; Guerfi, A.; Rioux, R.; Kinoshita, K., Purification process of natural graphite as anode for Li-ion batteries: chemical versus thermal. Journal of power Sources 2003, 119, 8-15.
4. Reddy, M. V.; Subba Rao, G.; Chowdari, B., Metal oxides and oxysalts as anode materials for Li ion batteries. Chemical reviews 2013, 113 (7), 5364-5457.
5. 李柏翰 鋰電池發明40年. 2019
6. David, W.; Thackeray, M.; De Picciotto, L.; Goodenough, J., Structure refinement of the spinel-related phases Li2Mn2O4 and Li0. 2Mn2O4. Journal of Solid State Chemistry 1987, 67 (2), 316-323.
7. Padhi, A. K.; Nanjundaswamy, K. S.; Goodenough, J. B., Phospho‐olivines as positive‐electrode materials for rechargeable lithium batteries. Journal of the electrochemical society 1997, 144 (4), 1188.
8. 劉如熹、仝梓正、廖譽凱、胡淑芬 108年度諾貝爾化學獎與鋰離子電池之發明.2020
9. Han, Y.; Liu, B.; Xiao, Z.; Zhang, W.; Wang, X.; Pan, G.; Xia, Y.; Xia, X.; Tu, J., Interface issues of lithium metal anode for high‐energy batteries: Challenges, strategies, and perspectives. InfoMat 2021, 3 (2), 155-174.
10. Feng, G.; Li, Z.; Mi, L.; Zheng, J.; Feng, X.; Chen, W., Polypropylene/hydrophobic-silica-aerogel-composite separator induced enhanced safety and low polarization for lithium-ion batteries. Journal of Power Sources 2018, 376, 177-183.
11. Goriparti, S.; Miele, E.; De Angelis, F.; Di Fabrizio, E.; Proietti Zaccaria, R.; Capiglia, C., Review on recent progress of nanostructured anode materials for Li-ion batteries. Journal of Power Sources 2014, 257, 421-443.
12. Abraham, D. P.; Furczon, M. M.; Kang, S. H.; Dees, D. W.; Jansen, A. N., Effect of electrolyte composition on initial cycling and impedance characteristics of lithium-ion cells. Journal of Power Sources 2008, 180 (1), 612-620.
13. Costa, C. M.; Silva, M. M.; Lanceros-Méndez, S., Battery separators based on vinylidene fluoride (VDF) polymers and copolymers for lithium ion battery applications. RSC Advances 2013, 3 (29).
14. Jang, J.; Oh, J.; Jeong, H.; Kang, W.; Jo, C., A Review of Functional Separators for Lithium Metal Battery Applications. Materials (Basel) 2020, 13 (20).
15. Li, A.; Yuen, A. C. Y.; Wang, W.; De Cachinho Cordeiro, I. M.; Wang, C.; Chen, T. B. Y.; Zhang, J.; Chan, Q. N.; Yeoh, G. H., A review on lithium-ion battery separators towards enhanced safety performances and modelling approaches. Molecules 2021, 26 (2), 478.
16. Yuan, M.; Liu, K., Rational design on separators and liquid electrolytes for safer lithium-ion batteries. Journal of Energy Chemistry 2020, 43, 58-70.
17. Lee, H.; Yanilmaz, M.; Toprakci, O.; Fu, K.; Zhang, X., A review of recent developments in membrane separators for rechargeable lithium-ion batteries. Energy Environ. Sci. 2014, 7 (12), 3857-3886.
18. Venugopal, G.; Moore, J.; Howard, J.; Pendalwar, S., Characterization of microporous separators for lithium-ion batteries. Journal of power sources 1999, 77 (1), 34-41.
19. <Characterization of microporous separators for lithium-ion batteries.pdf>.
20. Chun, S.-J.; Choi, E.-S.; Lee, E.-H.; Kim, J. H.; Lee, S.-Y.; Lee, S.-Y., Eco-friendly cellulose nanofiber paper-derived separator membranes featuring tunable nanoporous network channels for lithium-ion batteries. Journal of materials chemistry 2012, 22 (32), 16618-16626.
21. Zhang, S. S., A review on the separators of liquid electrolyte Li-ion batteries. Journal of Power Sources 2007, 164 (1), 351-364.
22. Francis, C. F.; Kyratzis, I. L.; Best, A. S., Lithium‐ion battery separators for ionic‐liquid electrolytes: a review. Advanced Materials 2020, 32 (18), 1904205.
23. Mo, Y.; Xiao, K.; Wu, J.; Liu, H.; Hu, A.; Gao, P.; Liu, J., Lithium-Ion Battery Separator: Functional Modification and Characterization 物理化學學報 2022, 22 p.
24. Deimede, V.; Elmasides, C., Separators for lithium‐ion batteries: a review on the production processes and recent developments. Energy technology 2015, 3 (5), 453-468.
25. 化學達人 隔離膜. 2010
26. Chandavasu, C.; Xanthos, M.; Sirkar, K.; Gogos, C., Fabrication of microporous polymeric membranes by melt processing of immiscible blends. Journal of membrane science 2003, 211 (1), 167-175.
27. He, M.; Zhang, X.; Jiang, K.; Wang, J.; Wang, Y., Pure inorganic separator for lithium ion batteries. ACS applied materials & interfaces 2015, 7 (1), 738-742.
28. Augustin, S.; Hennige, V.; Hörpel, G.; Hying, C., Ceramic but flexible: new ceramic membrane foils for fuel cells and batteries. Desalination 2002, 146 (1-3), 23-28.
29. Waqas, M.; Ali, S.; Feng, C.; Chen, D.; Han, J.; He, W., Recent development in separators for high‐temperature lithium‐ion batteries. Small 2019, 15 (33), 1901689.
30. Lee, H.; Yanilmaz, M.; Toprakci, O.; Fu, K.; Zhang, X., Energy Environ. Sci. 7, 3857 (2014).
31. Yang, M.; Hou, J., Membranes in lithium ion batteries. Membranes 2012, 2 (3), 367-383.
32. Yu, H.; Shi, Y.; Yuan, B.; He, Y.; Qiao, L.; Wang, J.; Lin, Q.; Chen, Z.; Han, E., Recent developments of polyimide materials for lithium-ion battery separators. Ionics 2021, 27 (3), 907-923.
33. Lu, Z.; Sui, F.; Miao, Y.-E.; Liu, G.; Li, C.; Dong, W.; Cui, J.; Liu, T.; Wu, J.; Yang, C., Polyimide separators for rechargeable batteries. Journal of Energy Chemistry 2021, 58, 170-197.
34. Liaw, D.-J.; Wang, K.-L.; Huang, Y.-C.; Lee, K.-R.; Lai, J.-Y.; Ha, C.-S., Advanced polyimide materials: Syntheses, physical properties and applications. Progress in Polymer Science 2012, 37 (7), 907-974.
35. Reneker, D. H.; Chun, I., Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology 1996, 7 (3), 216.
36. Miao, Y.-E.; Zhu, G.-N.; Hou, H.; Xia, Y.-Y.; Liu, T., Electrospun polyimide nanofiber-based nonwoven separators for lithium-ion batteries. Journal of Power Sources 2013, 226, 82-86.
37. Cohen, C.; Tanny, G.; Prager, S., Diffusion‐controlled formation of porous structures in ternary polymer systems. Journal of Polymer Science: Polymer Physics Edition 1979, 17 (3), 477-489.
38. Guillen, G. R.; Pan, Y.; Li, M.; Hoek, E. M. V., Preparation and Characterization of Membranes Formed by Nonsolvent Induced Phase Separation: A Review. Industrial & Engineering Chemistry Research 2011, 50 (7), 3798-3817.
39. Reuvers, A.; Van den Berg, J.; Smolders, C., Formation of membranes by means of immersion precipitation: Part I. A model to describe mass transfer during immersion precipitation. Journal of membrane science 1987, 34 (1), 45-65.
40. Guillen, G. R.; Pan, Y.; Li, M.; Hoek, E. M., Preparation and characterization of membranes formed by nonsolvent induced phase separation: a review. Industrial & Engineering Chemistry Research 2011, 50 (7), 3798-3817.
41. Wang, H.; Wang, T.; Yang, S.; Fan, L., Preparation of thermal stable porous polyimide membranes by phase inversion process for lithium-ion battery. Polymer 2013, 54 (23), 6339-6348.
42. <Polypropylenehydrophobic-silica-aerogel-composite separator induced enhanced safety and low polarization for lithium-ion batteries.pdf>.
43. Teixeira, J.; Cardoso, V. F.; Botelho, G.; Morão, A. M.; Nunes-Pereira, J.; Lanceros-Mendez, S., Effect of polymer dissolution temperature and conditioning time on the morphological and physicochemical characteristics of poly (Vinylidene fluoride) membranes prepared by non-solvent induced phase separation. Polymers 2021, 13 (23), 4062.
44. Lin, D.; Zhuo, D.; Liu, Y.; Cui, Y., All-Integrated Bifunctional Separator for Li Dendrite Detection via Novel Solution Synthesis of a Thermostable Polyimide Separator. J Am Chem Soc 2016, 138 (34), 11044-50.
45. Li, D.; Zhang, H.; Li, X., Porous polyetherimide membranes with tunable morphology for lithium-ion battery. Journal of Membrane Science 2018, 565, 42-49.
46. Li, M.; Zhang, Z.; Yin, Y.; Guo, W.; Bai, Y.; Zhang, F.; Zhao, B.; Shen, F.; Han, X., Novel Polyimide Separator Prepared with Two Porogens for Safe Lithium-Ion Batteries. ACS Appl Mater Interfaces 2020, 12 (3), 3610-3616.
47. Liu, Y.; Kodama, T.; Kojima, T.; Taniguchi, I.; Seto, H.; Miura, Y.; Hoshino, Y., Fine-tuning of the surface porosity of micropatterned polyethersulfone membranes prepared by phase separation micromolding. Polymer Journal 2020, 52 (4), 397-403.
48. Tan, J.; Kong, L.; Qiu, Z.; Yan, Y., Flexible, high-wettability and thermostable separator based on fluorinated polyimide for lithium-ion battery. Journal of Solid State Electrochemistry 2018, 22 (11), 3363-3373.
49. Lin, C.-E.; Zhang, H.; Song, Y.-Z.; Zhang, Y.; Yuan, J.-J.; Zhu, B.-K., Carboxylated polyimide separator with excellent lithium ion transport properties for a high-power density lithium-ion battery. Journal of Materials Chemistry A 2018, 6 (3), 991-998.
50. Li, Y.; Wang, X.; Liang, J.; Wu, K.; Xu, L.; Wang, J., Design of a high performance zeolite/Polyimide composite separator for Lithium-Ion batteries. Polymers 2020, 12 (4), 764.
51. Patel, A.; Wilcox, K.; Li, Z.; George, I.; Juneja, R.; Lollar, C.; Lazar, S.; Grunlan, J.; Tenhaeff, W. E.; Lutkenhaus, J. L., High modulus, thermally stable, and self-extinguishing aramid nanofiber separators. ACS Applied Materials & Interfaces 2020, 12 (23), 25756-25766.
52. 李赫 製造防彈背心必備的纖維「克維拉」,為何能夠強鋼勝鐵?.2018

無法下載圖示 全文公開日期 2027/08/24 (校內網路)
全文公開日期 2027/08/24 (校外網路)
全文公開日期 2027/08/24 (國家圖書館:臺灣博碩士論文系統)
QR CODE