簡易檢索 / 詳目顯示

研究生: 胡晉銘
Chin-ming Hu
論文名稱: 肺動脈高壓病患的血液動力學特性之相位對比磁振造影分析
Assessment of hemodynamic characteristics in patients with pulmonary hypertension using phase contract magnet resonance image
指導教授: 陳明志
Ming-jyh Chern
口試委員: 吳銘庭
Ming-ting Wu
林益如
Yi-ru Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 55
中文關鍵詞: 肺動脈高壓相位對比磁共振成像平均剪應力震盪剪應力
外文關鍵詞: Pulmonary arterial hypertension, Phase contrast magnetic resonance imagining, Average wall shear stress, Oscillatory shear index
相關次數: 點閱:293下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

肺動脈高壓是由於肺動脈流阻增加進而造成流量減少的綜合症,影響範圍包括心臟及肺部, 會逐
漸引起右心室衰竭。本研究主要目的是為了分析肺動脈高壓與血液動力學之間的關係, 調查健康
者與肺動脈高壓病患之間在肺動脈內血液動力學的差異。相位對比磁共振成像的技術可以獲取
人體肺動脈內真實的血流情況, 本研究利用此技術共分析44位案例(24位健康,12位高阻力型肺
動脈高壓及8位高流量型肺動脈高壓) 的流場型態、壓力分佈、平均壁面剪應力和平均震盪剪應
力和壁面剪應力及振盪剪應力的變異系數在正常者與肺動脈高壓病患之間的差異。除了上述這
些現象之外, 我們也計算了正常和病變樣本在肺動脈中的相對面積變化、脈波速度、肺動脈流阻
以及評估雷諾數。


Pulmonary arterial hypertension (PAH) is a syndrome resulting from decreased flow of
blood in the pulmonary vasculature due to increased pulmonary vascular resistance (PVR)
and this disease affects both the heart and lungs. A total of 44 cases (24 healthy volunteers,
12 patients with PAH-HR and 8 patients with PAH-HV) are analyzed to explain the
difference of hemodynamics between the healthy PA and PAH and to find out pathogenesis
of PAH. To investigate the relationship between hemodynamics and PAH, we use the
Phase Contrast Magnetic Resonance Imaging (PC-MRI) to calculate physical quantities.
Flow patterns, pressure distribution, relative area change (RAC), pulse wave velocity
(PWV), blood volumetric flow rate (Q) and Pulmonary vascular resistance (PVR) are
measured in PA , mean value of average wall shear stress (Ms) and oscillatory shear index
(Mo), the coefficient of variance of average wall shear stress (CVs) and oscillatory shear
index (CVo).

CONTENTS Chinese Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii 致謝. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii Nomenclatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi 1 INTRODUCTION 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 PC-MRI measurement and analysis 8 2.1 Image acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 · iv · 2.2 Image processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.3 Raw data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.4 Physical parameters of blood . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.4.1 Calculation of pressure . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.4.2 Relative area change (RAC) and Pulse wave velocity (PWV) . . . . 13 2.4.3 Pulmonary vascular resistance (PVR) . . . . . . . . . . . . . . . . . 14 2.4.4 Calculation of shear stress . . . . . . . . . . . . . . . . . . . . . . . 14 2.4.5 The coefficient of variance of AWSS (CVs) and OSI (CVo . . . . . . 16 3 RESULTS AND DISCUSSION 19 3.1 Analysis of flow patterns and pressure distribution . . . . . . . . . . . . . . 19 3.1.1 Main pulmonary artery . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.1.2 Left pulmonary artery . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.1.3 Right pulmonary artery . . . . . . . . . . . . . . . . . . . . . . . . 23 3.2 Relative area change and Pulse wave velocity . . . . . . . . . . . . . . . . . 24 3.3 Blood volumetric flow rate and pulmonary vascular resistance . . . . . . . 25 3.4 Analysis of shear stress distribution . . . . . . . . . . . . . . . . . . . . . . 27 3.4.1 Coefficient of variance of AWSS (CVs) and OSI (CVo) . . . . . . . . 28 4 CONCLUSIONS AND FUTURE WORKS 31 · v · 4.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 · vi

[1] Fukumoto, Y., Shimokawa, H., 2011, Recent progress in the management of pulmonary
hypertension. Circulation 75, 1801-1810.
[2] McLaughlin, V.V., McGoon, M.D., 2006, Pulmonary arterial hypertension. Circulation
114, 1417-1431.
[3] Humbert, M., Morrell, N.W., Archer, S.L.et al., 2004, Cellular and molecular pathobiology
of pulmonary arterial hypertension. Journal of the American College of Cardiology
43, 13S-24S.
[4] Peir’o, C., Redondo, J., Rodriguez-Martinez, A., Marin, J., S’anchez-Ferrer, C.F.,
1995, Influence of endothelium on cultured vascular smooth muscle cell proliferation.
Hypertension 25, 748-751.
[5] Jeffery, T.K., Morrell, N.W., 2002, Molecular and cellular basis of pulmonary vascular
remodeling in pulmonary hypertension. Progress in Cardiovascular Diseases 45, 173-
202.
[6] Fuster, V., Steele, P, M., Edwards, W, D., Gersh, B, J., McGoon, M, D., Frye, R,
L., 1984, Primary pulmonary hypertension: natural history and the importance of
thrombosis. Circulation 70, 580-587.
[7] Bonderman, D., Jakowitsch ,J., Redwan, B., Bergmeister, H., Renner, M.K.,
Panzenb‥ock, H., Adlbrecht, C., Georgopoulos, A., Klepetko, W., Kneussl, M., Lang,
I.M., 2008, Role for staphylococci in misguided thrombus resolution of chronic thromboembolic
pulmonary hypertension. Arteriosclerosis, Thrombosis, and Vascular Biology
28, 678-684.
[8] Olesen, S.P., Claphamt, D., Davies, P., 1988, Haemodynamic shear stress activates a
k+ current in vascular endothelial cells. Nature 331, 14.
[9] Li, Y.S., Haga, J.H., Chien, S., 2005, Molecular basis of the effects of shear stress on
vascular endothelial cells. Journal of Biomechanics 38, 1949-1971.
· 34 ·
[10] Chien, S., 2007, Mechanotransduction and endothelial cell homeostasis: the wisdom
of the cell. American Journal of Physiology - Heart and Circulatory Physiology 292,
H1209-H1224.
[11] Chiu, J.J., Usami, S., Chien, S., 2009, Vascular endothelial responses to altered shear
stress: pathologic implications for atherosclerosis. Annals of Medicine 41, 19-28.
[12] Stalder, A.F., Russe, M.F., Frydrychowicz, A., Bock, J., Hennig, J., Markl, M., 2008,
Quantitative 2D and 3D phase contrast MRI: optimized analysis of blood flow and
vessel wall parameters. Magnetic Resonance in Medicine 60, 1218-1231.
[13] Frydrychowicz, A., Stalder, A.F., Russe, M.F., Bock, J., Bauer, S., Harloff, A.,
Berger, A., Langer, M., Henning, J., Markl, M., 2009, Three-dimensional analysis
of segmental wall shear stress in the aorta by flow-sensitive four-dimensional-MRI.
Journal of Magnetic Resonance Imaging 30, 77-84.
[14] Harloff, A., NuBaumer, A., Bauer, S., Stalde, A.F., Frydrychowicz, A., Weller, C.,
Hennig, J., Markl, M., 2010. In vivo assessment of wall shear stress in the atherosclerotic
aorta using flow-sensitive 4D MRI. Magnetic Resonance in Medicine 63, 1529-
1536.
[15] Marque, V., Kieffer, P., Atkinson, J., Lartaud-Idjouadiene, I., 1999, Elastic properties
and composition of the aortic wall in old spontaneously hypertensive rats.
Hypertension 34, 415-422.
[16] Peng, H.H., Chung, H.W., Yu, H.Y., Tseng, W.Y.I., 2006, Estimation of pulse wave
velocity in main pulmonary artery with phase contrast MRI: preliminary investigation.
Journal of Magnetic Resonance Imaging 24, 1303-1310.
[17] Bradlow, W.M., Gatehouse, P.D., Hughes, R.L., O′Brien, A.B., Gibbs, J.S.R.,
Firmin, D.N., Mohiaddin, R.H., 2007, Assessing normal pulse wave velocity in the
proximal pulmonary arteries using transit time: a feasibility, repeatability, and observer
reproducibility study by cardiovascular magnetic resonance, Journal of Magnetic
Resonance Imaging 25, 974-981.
[18] Gan, C.T.J., Lankhaar, J.W., Westerhof, N., Marcus, J.T., Becker, A., Twisk,
J.W.R., Boonstra, A., Postmus, P.E., Vonk-Noordegraaf, A., 2007, Noninvasively
assessed pulmonary artery stiffness predicts mortality in pulmonary arterial hypertension.
Chest 132, 1906-1912.
[19] Mousseaux, E.M., Tasu, J.P., Jolivet, O., Simonneau, G., Bittoun, J., Gaux, J.C.,
1999, Pulmonary arterial resistance: noninvasive measurement with indexes of pulmonary
flow estimated at velocity-encoded MR imaging-preliminary experience. Radiology
212, 896-902.
· 35 ·
[20] Tyszka, J.M., Laidlaw, D.H., Asa, J.W., Silverman, J.M., Zhu, M., 2000, Three
dimensional, time-resolved (4D) relative pressure mapping using magnetic resonance
imaging. Journal of Magnetic Resonance Imaging 12, 321-329.
[21] Bock, J., Frydrychowicz, A., Lorenz, R., Hirtler, D., Barker, A.J., Johnson, K.M,,
Arnold, R., Burkhardt, H., Hennig, J., Markl, M., 2011, In Vivo noninvasive 4D pressure
difference mapping in the human aorta: phantom comparison and application
in healthy volunteers and patients. Magnetic Resonance in Medicine 66, 1079-1088.
[22] Friman, O., Hennemuth, A., Harloff, A., Bock, J., Markl, M. and Peitgen, H.O., 2010,
Probabilistic 4D blood flow mapping. Medical Image Computing and Computer 13,
416-423.
[23] Yamashita, S., Isoda, H., Hirano, M., Takeda, H., Inagawa, S., Takehara, Y., Alley,
M.T., Markl, M., Pelc, N.J., Sakahara, H., 2007, Visualization of hemodynamics
in intracranial arteries using time-resolved three-dimensional phase-contrast MRI.
Journal of Magnetic Resonance Imaging 25, 473-478.
[24] Gatehouse, P.D., Keegan, J., Crowe, L.A., Masood, S., Mohiaddin, R.H., Kreitner,
K.F., Firmon, D.N., 2005, Applications of phase contrast flow and velocity imaging
in cardiovascular MRI. European Radiology 15, 2172-2184.
[25] Harloff, A., Albrecht, F., Spreer, J., Stalder, A.F., Bock, J., Frydrychowicz, A.,
Sch‥ollhorn, J., Hetzel, A., Schumacher, M., Hennig, J., Markl, M., 2009, 3D blood
flow characteristics in the carotid artery bifurcation assessed by flow-sensitive 4D
MRI at 3T. Magnetic Resonance in Medicine 61, 65-74.
[26] Kvitting, J.P., Ebbers, T., Wigstr‥om, L., Engvall, J., Olin, C.L., Bolger, A.F.,
2004, Flow patterns in the aortic root and the aorta studied with time-resolved,
3-Dimensional, phase-contrast magnetic resonance imaging: implications for aortic
valve  sparing surgery. The Journal of Thoracic and Cardiovascular Surgery 127,
1062-1607.
[27] Markl, M., Frydrychowicz, A., Kozerke, S., Hope, M and Wieben, O., 2012, 4D Flow
MRI. Journal of Magnetic Resonance Imaging 36, 1015-1036.
[28] Reiter, G., Reiter, U., Kovacs, G., Kainz, B., Schmidt, K., Maier, R., Olschewski, H.,
Rienmueller, R., 2008, Magnetic resonance derived 3-Dimensional blood flow patterns
in the main pulmonary artery as a marker of pulmonary hypertension and a measure
of elevated mean pulmonary arterial pressure. Circulation: Cardiovascular Imaging
1, 23-30.
[29] Morgan, V.L., Roselli, R.J., Lorenz, C.H., 1998, Normal three dimensional pulmonary
artery flow determined by phase contrast magnetic resonance imaging. Annals of
Biomedical Engineering 26, 557-566.
· 36 ·
[30] Dammers, R., Stifft, F., Tordoir, J.H.M., Hameleers, J.M.M., Hoeks, A.P.G., Kitslaar,
P.J.H.M., 2003, Shear stress depends on vascular territory: comparison between
common carotid and brachial artery. Journal of Applied Physiology 94, 485-489.
[31] Pedley, T.J., 1980, The Fluid Mechanics of Large Blood Vessels Cambridge University
Press Cambridge, U.K., ISBN 0521226260.
[32] Berger, S.A. and Jou, L.D., 2000, Flows in stenotic vessels. Annual Reviews of Fluid
Mechanics 32, 347-382.
[33] Ku, D.N., Giddens, D.P., Zarins, C.K., Glagov, S., 1985, Pulsatile flow and atherosclerosis
in the human carotid bifurcation. Positive correlation between plaque location
and low oscillating shear stress. Arteriosclerosis 5, 293-302.
[34] Ibrahim, E.S., 2012, Accurate method for measuring arterial pulse wave velocity by
cardiovascular magnetic resonance. Journal of Cardiovascular Magnetic Resonance
14, (Suppl 1)-O12.
[35] Geiger, J., Markl, M., Jung, B., Grohmann, J., Stiller, B., Langer, M., Arnold, R.,
2011, 4D-MR flow analysis in patients after repair for tetralogy of fallot. European
Radiology 21, 1651-1657.
[36] Berger, D.S., Li, J.K., Noordergraaf, A., 1994, Differential effects of wave reflections
and peripheral resistance on aortic blood pressure: a model-based study. American
Journal of Physiology 266, 1626-1642.
[37] Tang, B.T., Pickard, S.S., Chan, F.P., Tsao, P.S., Taylo, C.A and Feinstein, J.A.,
2012, Wall shear stress is decreased in the pulmonary arteries of patients with pulmonary
arterial hypertension: An image-based, computational fluid dynamics study.
Pulmonary Circulation 2, 470-476.

QR CODE