研究生: |
許雅如 Yea-Ru Sheu |
---|---|
論文名稱: |
環氧樹脂複合材之製備及其熱、力學研究 Study on the preparation thermal and mechanical of the epoxy resin composite materials |
指導教授: |
蘇舜恭
Shuenn-kung Su |
口試委員: |
邱士軒
Shih-Hsuan Chiu 黃國賢 Kuo-Shien Huang |
學位類別: |
碩士 Master |
系所名稱: |
工程學院 - 材料科學與工程系 Department of Materials Science and Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 100 |
中文關鍵詞: | 環氧樹脂 、奈米SiO2 、交聯聚乙烯 、椰殼纖維 、機械性質 |
外文關鍵詞: | mechanical properties, coir fiber, Cross-linked polyethylene, nano-SiO2, epoxy resin |
相關次數: | 點閱:352 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要針對三種不同填充材,如奈米SiO2顆粒、交聯聚乙烯(Crosslinking Polyethylene,CPE)及改質椰殼纖維,利用環氧樹脂與不同比例之填充材及一定分散劑濃度下,共同混摻並於130℃下壓鑄成型製備各種複合材,並以相關儀器檢測各種複合材之性質。經實驗結果得知,奈米SiO2顆粒能與環氧樹脂形成氫鍵結合,SiO2粒子的加入可有效提升複合材的耐熱性、力學性能及抗紫外線,然超過3%力學性能逐漸變差。
利用回收廢棄物交聯聚乙烯為填充材,因交聯聚乙烯沒有活性基團可與環氧樹脂產生鍵結,導致界面相容性差,在耐熱性上無明顯提升,力學性質則隨交聯聚乙烯含量增加有先增後減的趨勢,過1%後力學性能逐漸變差。
另外將回收廢棄椰殼纖維,利用TEOS改質後,藉由FTIR可以看到在1100cm-1有C-O-C與C-O-Si之明顯重疊吸收峰,而由particle diameter可知纖維素粒徑隨TEOS體積增加而變大,在SEM中也可觀察粒子隨TEOS體積增加而有所團聚,抗紫外線能力亦隨TEOS體積增加而提高;製備定量纖維素複合材,藉由熱性質、動態力學及抗拉強度之檢測發現,以TEOS體積為10ml為最佳比例;做後續改質纖維素複合材比例含量變化,複合材由SEM圖可以得知隨比例增加,粒子分佈更加密集,纖維素與環氧樹脂是緊密纏繞一起,且隨比例增加其分解速率較為緩慢,在力學性質以塡加量為5%有最佳效果。
This study focuses on three different filling materials nano SiO2 particles, cross-linked polyethylene particles (CPE), modified coir fiber, Blending the epoxy resin and different ratio filling materials with fix dispersant concentration on the thermo-compressor temperature at 130℃ forming the preparation of a variety of composite. According to the experimental results, hydrogen bonds can be formed by mixing SiO2 particles and epoxy resin. Thermo-resistance, mechanical property and resistance to UV of composite are found to improve with the addition of SiO2, but degrade if the nano-SiO2 is excess of 3%.
This study was used for fill material from recycled waste, due to CPE is not active groups can bonding with epoxy resin, resulting in poor interface compatibility, it’s not significant increase in thermo-resistance, mechanical properties with CPE content have increasing after decreased trend, degrade if the CPE is excess of 1%.
This paper studied the modification of coir fiber with smelting gel method. The coir fiber was the recycled material, and the Tetraethyl orthosilicate (TEOS) was used as inorganic precursor. Through the experimental results, coir fiber used TEOS modification, in FTIR analysis in 1100cm-1 have C-O-C and C-O-Si obvious overlapping absorption peaks, the coir fiber particle diameter increase with the TEOS volume. Particles can be observed in SEM reunion and UV resistance with the TEOS volume increase. Preparation quantitative coir fiber composites by thermal properties, dynamic mechanical and tensile strength, the 10ml TEOS is the best proportion. Then to change the coir fiber content of the composite, with the increase coir fiber can be understating particle distribution is more intensive, coir fiber and epoxy resin is tightly together, and with the increase in the proportion of its decomposition rate is relatively slow, in the mechanical properties to a dosage of 5% is the best results.
1.馬振基,“奈米材料科技原理及應用,”全華科技圖書股份有限公司, 2003.
2.許明發、郭文雄,“複合材料,”高立圖書有限公司, 2004.
3.周森,“複合材料─奈米‧生物科技,”全威圖書有限公司, 2002.
4.林建中,“高分子材料科學(高分子材料機械性質),”新文京開發出版股份有限公司, 1999.
5.V. C. Kalia, N. Raizada and V. Sonakya, “Bioplastics,” Journal of Scientific and Industrial Research, vol. 59, pp. 433–445, 2000.
6.F. Bauer, H. J. Glasel, E. Hartmann, H. Langguth and R. Hinterwaldner, “Functionalized inorganic/organic nanocomposites as new basic rawmaterials for adhesives and sealants,” International Journal of Adhesion and Adhesives, vol. 24, pp. 519–522, 2004.
7.A. Klukowska, U. Posset, G. Schottner, M. L. Wis, C. Salemi-Delvaux and V. Malatesta, “Photochromic hybrid sol–gel coatings: preparation, properties, and applications,” Materials Science, vol. 20, pp. 95–104, 2002.
8.M. Nocun, E. Leja and W. Bugajski, “Microstructure and optical properties of methylmethacrylate-modified silica hybrid glasses and thin films,” Materials Science, vol. 21, pp. 471–479, 2003.
9.Yong Ni, Sixun Zhenga and Kangming Nie, “Morphology and thermal properties of inorganic–organic hybrids involving epoxy resin and polyhedral oligomeric silsesquioxanes,” Polymer, vol. 45, pp. 5557–5568, 2004.
10.徐武軍,“高分子材料導論,”五南圖書出版股份有限公司, 2004.
11.黃梧桐,“ERP用不飽和聚酯樹脂,”ERP協進會講議, 1980.
12.馬振基,“高分子複合材料,”國立編譯館, 2009.
13.徐國財、張立德,“奈米複合材料,”五南圖書出版股份有限公司, 2004.
14.蕭世明,“含磷/氮難燃高分子之製備與熱穩定性質,”國立中興大學碩士學位論文, 2001.
15.劉吉平、郝向陽,“奈米科學與技術,”科學出版社, 2002.
16.劉佳鑫,“Epoxy/SiO2奈米混成材料製備及其在光電封裝應用之研究,”國立成功大學碩士學位論文, 2005.
17.郭正次、朝春光,“奈米結構材科學,”全華科技圖書股份有限公司, 2004.
18.D. W. Bahnemann, “Ultrasmall metal oxide particles: preparation, photophysical characterization and photocatalytic properties,” Israel Journal of Chemistry, vol. 33, pp. 115–136, 1993.
19.高濓、孫靜、劉陽橋,“奈米粉體的分散及表面改性,”五南圖書出版股份有限公司, 2005.
20.黃光弘,“硫化鋅螢光粉披覆二氧化鈦和二氧化矽之製備與特性研究,”國立成功大學碩士學位論文, 2006.
21.嶋田吉英、山口達明、西崎寬樹、山本真、賴耿陽譯者,“塑膠廢料有效利用,”復漢出版社, 1983.
22.王如龍、許昆鹏,“廢舊塑料的回收利用實用技術,”化學工業出版社, 2010.
23.John F. Kadla, Satoshi Kubo, Richard A. Venditti and Richard D. Gilbert, “Novel Hollow Core Fibers Prepared from Lignin Polypropylene Blends,” Journal Applied Polymer Science, vol. 85, pp. 1353–1355, 2002.
24.P. Alexy, B. Kosikova and G. Podstranska, “The effect of blending lignin with polyethylene and polypropylene on physical properties,” Polymer, vol. 41, pp. 4901-4908, 2000.
25.H. D. Rozman, K. W. Tan, R. N. Kumar, A. Abubakar, Z. A. Mohd. Ishak and H. Ismail, “The effect of lignin as a compatibilizer on the physical properties of coconut fiber-polypropylene composites,” European Polymer Journal, vol. 36, pp. 1483–1494, 2000.
26.羅學剛,“高純木質素提取與熱塑改性,”化學工業出版社, 2008.
27.Anatole A. Klyosov, “Wood-plastic Composites,” John Wiley and Sons, 2007.
28.王偉宏、宋永明、高華,“木塑複合材料,”科學出版社, 2010.
29.J. D. Umpleby, “Material choice for wood-plastic composites. In: Wood-Plastic Composites-A Sustainable Future,” International Conference, Vienna, Austria, 2002.
30.J. Gassan and A. K. Bledzki, “Dynamic-mechanical properties of natural fiber-reinforced plastics: the effect of coupling agents,” In: Fourth International Conference on Wood fiber~Plastic Composites, Madison, 1997.
31.B. L. Cushing, V. L. Kolesnichenko and C. J. O'Connor, “Recent Advances in the. Liquid-Phase Syntheses of Inorganic Nanopaiticles,” Chemical Reviews, vol. 104, pp. 3893–3946, 2004.
32.Eric A. Gulliver, John W. Garvey, Teresa A, Wark, J. Hampden-Smith and Abhaya Datye, “Hydrolytic Condensation of Tin(IV) Alkoxide Compounds to Form Particles with Well-Defined Morphology,” Journal of the American Ceramiv Society, vol. 74, pp. 1091–1094, 1991.
33.J. B. Blum, “Raman studies on sol-gel derived PbTiO3,” Materials Letters, vol. 3, pp. 360-362, 1985.
34.D. N. Furlong and K. S. W. Sing, “The precipitation of silica on titanium dioxide surfaces:Ⅰ. Preparation of coated surfaces and examination by electrophoresis,” Journal of Colloid and Interface Science, vol. 69, pp. 409–419, 1979.
35.T. Ishikawa and E. Matijevic, “Formation of monodispersed pure and coated spindle-type iron particles,” Langmuir, vol. 4, pp. 26–31, 1988.
36.A. P. Philipase, M. P. B. Van Bruggen and C. Pathmamanoharan, “Magnetic silica dispersions. Preparation and stability of surface-modified silica particles with a magnetic core,” Langmuir, vol. 10, pp. 92–99, 1994.
37.W. Shih, D. Kisailus and Wei. Y. Mater, “Silica coating on barium titanate particles,” Materials Letters, vol. 24, pp. 13–15, 1995.
38.M. A. Correa-Duarte, M. Giersig and L. M. Liz-Marzan, “Stabilization of CdS semiconductor nanoparticles against photodegradation by a silica coating procedure,” Chemical Physics Letters, vol. 286, pp. 497–501, 1998.
39.B. Jirgensons and M. E. Straumanis, Colloid Chemistry, MacMillan Company, New York, USA, 1962.
40.羅吉宗、戴明鳳、林鴻明、鄭振宗、蘇程裕、吳育民,“奈米科技導論,” 全華科技圖書股份有限公司, 2003.
41.汪信、劉孝恒,“奈米材料化學,”五南圖書出版股份有限公司, 2006.
42.戴炘,“酚醛樹脂/二氧化矽奈米混成防火複合材料增韌製程及其特性之研究,”國立清華大學碩士學位論文, 2002.
43.C. J. Brinker, “Hydrolysis and condensation of silicates: Effects on structure,” Journal of Non-Crystalline Solids, vol. 100, pp. 31–50, 1988.
44.B. Himmel, Th. Gerber and H. Burger, “X-ray diffraction investigations of silica gel structures,” Journal of Non-Crystalline Solids, vol. 91, pp. 122–136, 1987.
45.R. K. Iler, “The chemistry of silica: solubility, polymerization, colloid and surface properties, and biochemistry,” John Wiley and Sons, 1979.
46.B. J. Skutnik and M. R. Trumbull,“ High strength, unbuffered optical fibers,” Journal of Non-Crystalline Solids, vol. 239, pp. 210–218, 1998.
47.C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli and J. S. Beck, “Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism,” Nature, vol. 359, pp.710–712, 1992.
48.T. Brennan, S.J. Roser, S.Mann and K. J. Edler, “Characterisation of the structure of mesoporous thin films grown at the air/water interface using x-ray surface techniques,” Langmuir, vol. 19, pp. 2639–2643, 2003.
49.K. M. McGrath, D. M. Dabbs, N. Yao, I. A. Aksay and S. M. Gruner, “Formation of a Silicate L3 Phase with Continuously Adjustable Pore Sizes,” Science, vol. 277, pp.552–556, 1997.
50.S. H. Tolbert, A. Firouzi, G.D. Stucky,and B. F. Chmelka, “Magnetic Field Alignment of Ordered Silicate-Surfactant Composites and Mesoporous Silica,” Science, vol. 278, pp. 264–268, 1997.
51.W. P. Hsu, R. Yu and E. Matijevic, “Paper Whiteners. I. Titania Coated Silica,” Journal of Colloid And Interface Science, vol. 156, pp. 56–65, 1993.
52.林佳民,“以溶膠-凝膠法製作酚醛樹脂/二氧化矽之有機無機混成材料以及其在纖維強化複合材料上之製備與應用,”國立清華大學博士學位論文, 1999.
53.Chin-Lung Chianga and Chen-Chi M. Ma, “Synthesis, characterization and thermal properties of novel epoxy containing silicon and phosphorus nanocomposites by sol-gel method,” European Polymer Journal, vol. 38, pp. 2219–2224, 2002.
54.邱顯烈,“以溶膠-凝膠法製備Epoxy/SiO2奈米材料及其在高透光性光電元件封裝之應用研究,”國立成功大學碩士學位論文, 2005.