簡易檢索 / 詳目顯示

研究生: 洪聖哲
Sheng-Jhe Hong
論文名稱: 單自由度系統具隨機變數分析方法之比較研究
A Comparative Study of Single-degree-offreedom Systems with Random Variable Analysis Methods
指導教授: 黃慶東
Ching-Tung Huang
口試委員: 陳瑞華
RUI-HUA CHEN
鄭繁
FAN ZHENG
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 133
中文關鍵詞: 隨機變數參數擾動法正交多項式加權殘餘法
外文關鍵詞: Random variables, Perturbation method, Orthogonal polynomials, Weighted residual method
相關次數: 點閱:326下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究探討了在單自由度動力方程式中考慮系統參數不確定性的問題,其中包括材料特性的變異、製造公差和測量誤差等多種不確定性因素,將系統參數假設為隨機變數,準確地估計和分析系統參數的不確定性對於確保系統性能和安全至關重要。
在這項研究中,列出了兩種方法來處理系統參數不確定性,分別是參數擾動法和正交函數展開法,參數擾動法通過假設擾動參數來模擬參數的隨機變動,並利用數值分析方法求解動力方程式以獲得系統的位移反應,正交函數展開法則是將系統的參數空間展開成正交函數的級數,將參數估計轉化為正交函數的系數求解問題。
為了比較這兩種方法的效果,我們在兩個具體的案例中使用數值積分法的計算結果做為比較基準,並與另外兩種方法進行比較,結果顯示這兩種方法在考慮系統參數不確定性方面都取得了良好的效果,能夠提供準確的參數估計和敏感性分析結果,在某些情況下,正交函數展開法表現出更好的性能,尤其是在隨機變數空間較大且不確定性較高時。
總結而言,本研究比較了兩種方法來處理單自由度動力方程式中的系統參數不確定性問題,並比較了它們的效果,這些方法對於確定系統參數估計和敏感性分析具有重要的實際價值,並能夠提供更準確和可靠的工程解決方案,在具體應用時,可以根據問題的特點選擇適合的方法,以獲得最佳的結果。


This study investigates the problem of considering the uncertainty of system
parameters in single-degree-of-freedom dynamic equations, which includes various
uncertainties such as material property variability, manufacturing tolerances, and
measurement errors, etc. Assuming these system parameters as random variables,
accurate estimation and analysis of the uncertainty of system parameters are essential
to ensure system performance and safety.
In this study, two methods are listed to deal with the uncertainty of system
parameters, namely the parameter perturbation method and the orthogonal function
expansion method. The parameter perturbation method simulates the random variation
of parameters by assuming the perturbation parameters and solves the dynamic equation
to obtain the displacement response of the system using numerical analysis. The
orthogonal function spreading method solves the problem by spreading the system
parameter space into a hierarchy of orthogonal functions and converting the parameter
estimates into coefficients of orthogonal functions.
In order to compare the effectiveness of these two methods, we use the results of
the numerical integration method as a benchmark in two specific cases and compare
them with the other two methods. In some cases, the orthogonal function spreading
method shows better performance, especially when the random variable space is large
and the uncertainty is high.
In conclusion, this study compares two methods to deal with the uncertainty of
system parameters in single-degree-of-freedom dynamical equations and compares
their effects. These methods have important practical value in determining system
parameter estimation and sensitivity analysis, and can provide more accurate and
reliable engineering solutions. In specific applications, suitable methods can be selected
according to the characteristics of the problem to obtain the best results.

圖目錄 VI 表目錄 XII 第一章 緒論 1 1.1 研究動機與目的 1 1.2 研究方法與內容 1 1.3 文獻回顧 2 1.4 本文內容 4 第二章 數值積分(Numerical integration)法分析 5 2.1 數值分析參數 5 2.2 機率分布 6 2.2.1 其他機率分佈 6 2.3 時間域Newmark 數值積分 9 2.4 期望值及標準差 9 2.5 數值分析收斂性驗證 10 2.6 機率分佈變化比較 11 第三章 參數擾動法(Perturbation method)分析 32 3.1 參數擾動法 ( Perturbation method )分析流程 32 3.1.1 假設阻尼比 ξ 為系統不確定參數 33 3.1.2 假設自然頻率 ω 為隨機變數 34 3.1.3 期望值及標準差 35 3.2 參數擾動法與數值分析解差異之探討 36 3.2.1 阻尼比不確定性 37 3.2.2 自然頻率不確定性 37 3.2.3 改變自然頻率及自然頻率期望值 37 3.2.4 機率密度函數之比較 38 第四章 正交函數展開法分析 70 4.1 前言 70 4.2 單變數理論推導 70 4.2.1 使用均勻機率分佈 73 4.2.2 使用 α=1 超球面機率分佈 76 4.2.3 使用 α=2 超球面機率分佈 78 4.2.4 期望值及標準差 81 4.3 多變數理論推導 81 4.4 分析結果比較 91 4.4.1 阻尼比不確定性 91 4.4.2 自然頻率不確定性 91 4.4.3 機率密度函數之比較 92 4.4.4 阻尼比和自然頻率不確定性 92 第五章 近似解精度分析之討論 110 5.1 前言 110 5.2 數值三點分析 110 第六章 結論與建議 115 參考文獻 117

[1] Abramowitz, Milton, and Irene A. Stegun. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. United States. 9th printing with corrections, 1970 ed. Washington, D.C.: U.S. Dept. of Commerce, National Bureau of Standards, 1970. Print.
[2] Benaroya, H., and M. Rehak. "Finite Element Methods in Probabilistic Structural Analysis: A Selective Review." Applied Mechanics Reviews 41.5 (1988): 201-13. Print.
[3] Bender, Carl M., and Steven A. Orszag. Advanced Mathematical Methods for Scientists and Engineers. 1999.Web.
[4] Cai, G. Q., and Y. K. Lin. "Statistical Distribution of Frequency Response in Disordered Periodic Structures." AIAA Journal 30.5 (1992): 1400-07. Print.
[5] Chen, P. C., and W. W. Soroka. "Impulse Response of a Dynamic System with Statistical Properties." Journal of Sound and Vibration 31.3 (1973): 309-14. Print.
[6] Jensen, H., and W. D. Iwan. "Response Variability in Structural Dynamics." Earthquake Engineering & Structural Dynamics 20.10 (1991): 949-59. Print.
[7] Li, Jie, and Songtao Liao. "Response Analysis of Stochastic Parameter Structures under Non-Stationary Random Excitation." Computational Mechanics 27.1 (2001): 61-68. Print.
[8] Liu, Bao-Guo. "Eigenvalue Problems of Rotor System with Uncertain Parameters." Journal of Mechanical Science and Technology 26.1 (2012): 1-10. Print.
[9] Navarro-Quiles, Ana, Rossella Laudani, and Giovanni Falsone. "Effect of Uncertain Damping Coefficient on the Response of a Sdof System." Probabilistic Engineering Mechanics 68 (2022): 103238. Print.
[10] Nayfeh, Ali Hasan. Perturbation Methods. Wiley Classics Library. Wiley classics library ed ed. New York: John Wiley & Sons, 2004. Print.
[11] Papadimitriou, C., L. S. Katafygiotis, and J. L. Beck. "Approximate Analysis of Response Variability of Uncertain Linear Systems." Probabilistic Engineering Mechanics 10.4 (1995): 251-64. Print.
[12] Sun, T. "A Finite Element Method for Random Differential Equations." Approximate Solution of Random Equations (1979): 223-37. Print.
[13] Wei, Zhang, and Nobuyuki Shimizu. "Numerical Algorithm for Dynamic Problems Involving Fractional Operators." JSME International Journal Series C 41 (1998): 364-70. Print.

無法下載圖示
全文公開日期 2028/08/07 (校外網路)
全文公開日期 2043/08/07 (國家圖書館:臺灣博碩士論文系統)
QR CODE