簡易檢索 / 詳目顯示

研究生: 趙奕惟
Yi-Wei Chao
論文名稱: 具高驅動能力之奈密尺寸電晶體
Nanometer-scale transistor with high driving capability
指導教授: 莊敏宏
Miin-Horng Juang
口試委員: 張勝良
Sheng-Lyang Jang
徐世祥
Shih-Hsiang Hsu
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 60
中文關鍵詞: 金屬氧化物半導體無接面電晶體溝渠式閘極無接面電晶體高驅動能力元件奈米尺寸電晶體短通道效應熱載子效應
外文關鍵詞: Junctionless MOSFET, Trench-gate functionless MOSFET, high driving capability device, Nanometer-scale transistor, Short-channel effects, Hot-carrier effect, Drain-induced barrier lowering, Gate-induced-drain leakage, DIBL, GIDL
相關次數: 點閱:406下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 如同Intel共同創辦人Gordon Moore提出的摩爾定律所描述,積體電路上,可容納的電晶體數目,約每隔兩年便會增加一倍,而這樣成長速度的幕後推手,就是晶片微縮技術所造就的,但傳統金屬氧化物半導體元件在微縮化後會產生一些可靠度的問題,例如短通道效應中的熱載子效應、閘極引起汲極漏電流、汲極與源極的擊穿效應等等,這些對於元件本身電性有非常大的影響,故需要設法解決這些問題。
    無接面電晶體因為沒有p型摻雜,無法阻擋汲極與源極之間的擊穿效應(punch through),故漏電流相較於一般的電晶體來說會有較差的漏電抑制能力,此篇論文的目的就是透過元件結構改變及其相關參數模擬分析,來實踐獲得新型操作方式的高性能元件,故在此提出以溝渠式閘極的無接面電晶體來觸發埋入的雙極性接面二極體,藉此以形成高電流輸出之電晶體;利用溝渠式閘極的方式來改善較差的漏電特性,另外在汲極的區域形成埋入的p型重摻雜區域,藉此會因在汲極區域之p-n接面形成一個能障來抑制漏電流,並且由於上述PN二極體,電流成份不再只有電子流,而且多了電洞流,故總輸出電流提升。所以相較於微縮化之傳統金屬氧化物場效電晶體,此元件結構可有效地改善漏電特性及提高輸出電流。


    As described by Moore's Law, proposed by Intel co-founder Gordon Moore, the number of transistors that can be accommodated on an integrated circuit is doubled every two years, and the behind-the-scenes push for such growth is wafer miniaturization. What is created, but the conventional metal oxide semiconductor device will have some reliability problems after miniaturization, such as the hot carrier effect in the short channel effect, the gate leakage current (GIDL), punch through, etc. These have a very large impact on the electrical properties of the components themselves, so it is necessary to try to solve these problems.
    Since the junctionless transistor does not have p-type doping to block the punch through, the leakage current has a poor suppression performance compared with the general transistor. The purpose of this paper is to simulate the change of the device structure and its related parameters. This thesis proposes a trench-gate junctionless transistor to trigger the p-n junction diode. The trench-gate is employed to improve poor leakage characteristics, and the embedded p+ region in the n+ drain region can also form an energy barrier to suppress leakage current. In addition, due to the embedded p-n junction diode, the output current is significantly increased. As a result, as compared to the conventional metal oxide field effect transistor with miniaturization, the device structure can effectively improve the leakage characteristics and enhance the output current.

    摘要 I Abstract II 致謝 III Content IV Table Lists VI Figure Captions VII Chapter 1 Introduction 1 1-1 Conventional MOSFET 2 1-1-1 Short-channel effects 2 1-1-2 Hot-carrier effect 2 1-1-3 Drain-induced barrier lowering (DIBL) 3 1-1-4 Gate-induced-drain leakage (GIDL) 3 1-2 Junctionless MOSFET 3 1-3 Motivation 5 1-4 Thesis organization 5 Chapter 2 Device Scheme 7 2-1 The fabrication of the trench-gate junctionless MOSFET structure. 8 2-2 The fabrication of the nano-scale bipolar transistor triggered by trench-gate junctionless MOSFET structure. 16 Chapter 3 Results and Discussion 23 3-1 Comparison between conventional MOSFET and planar junctionless MOSFET 23 3-1-1 Conventional MOSFET 23 3-1-2 Planar junctionless MOSFET 25 3-1-3 Comparison between conventional MOSFET and planar junctionless MOSFET 28 3-2 Comparison between planar junctionless MOSFET and trench-gate junctionless MOSFET 29 3-2-1 Trench-gate junctionless MOSFET 30 3-2-2 Comparison between planar junctionless MOSFET and trench-gate junctionless MOSFET 32 3-3 Comparison between trench-gate junctionless MOSFET and nano-scale bipolar transistor triggered by trench-gate junctionless MOSFET 33 3-3-1 Nano-scale bipolar transistor triggered by trench-gate junctionless MOSFET 34 3-3-2 Comparison between trench-gate junctionless MOSFET and nano-scale bipolar transistor triggered by trench-gate junctionless MOSFET 36 3-4 Output characteristics 39 Chapter 4 Conclusion 45 Reference 46

    Reference
    [1] W. Y. Choi, J. D. Lee and B. G. Park, " Novel Tunneling Devices with Multi-Functionality ", Japanese Journal of Applied Physics, Vol. 46, No. 4B, pp. 2622- 2625, 2007.
    [2] M. Fathipour and Z. Ahangari, " Impact of Channel Thickness on the Electrical Characteristics of Nanoscale Double Gate SOI MOSFET with Metal Source-Drain " Optoelectronic and Microe lectronic Materials and Devices, 2008. COMMAD 2008. Conference, Sydney, SA, July 28 2008- August 1 2008, pp. 144-147, July 2008.
    [3] J. Larson and J. Snyder, " Overview and status of metal S/D Schottky-barrier MOSFET technology " 2006.
    [4] B. Winstead and U. Ravaioli, " Simulation of schottky barrier MOSFET's with a coupled quantum injection/Monte Carlo technique " IEEE Trans. Electron Devices, vol. 47, no. 6, June 2000.
    [5] S. Zhu, H. Y. Yu, S. J. Whang, J. H. Chen, C. Shen, C. Zhu, S. J. Lee, M. F. Li, D. S. H. Chan, W. J. Yoo, A. Du, C. H. Tung, J. Singh, A. Chin, and D. L. Kwong, " Schottky-barrier S/D MOSFETS with high-K gate dielectrics and metal-gate electrode " IEEE Electron Device Lett., vol. 25, no. 5, May 2004.
    [6] S. Wolf, " Silicon Processing for the VLSI era ", Vol.4, p.559, 2002.
    [7] S. Wolf, " Silicon Processing for the VLSI era ", Vol.4, p.198, 2002.
    [8] S. Wolf, " Silicon Processing for the VLSI era ", Vol.4, p.211, 2002.
    [9] S.M. Sze, " Semiconductor devices: physics and technology ", third edition, p.200, 2013.
    [10] M. Vadizadeh, M. Fathipour and A. Amid, " A Novel Nanoscale Tunnel FET Structure for Increasing for On/Off Current Ratio ", 2008 International Conference on Microelectronics, 2008.
    [11] S.M. Sze, " Semiconductor devices: physics and technology ", third edition, p.202, 2013.
    [12] Y. Taur and T.h. Ning, "Fundamentals of Modern VLSI Device", New York: Cambridge Univ, Press, 1998, ch.2, pp.97-99, 1998.
    [13] Y. Chen, T. Y. Chan, I. C. Chen, P. K. Ko, and C. Hu, " Subbreakdown leakage current in MOSFET " IEEE Electron Device Lett., vol. EDL-8, no. 11, pp. 515-517, November 1987.
    [14] S. Banerjee, J. Coleman, W. Richardson, and A. Shah, "A band-to- band tunneling effect in trench transistor cell," in VLSI Symp. Tech. Dig 1987, pp. 97-98, 1987.
    [15] K. Akarvardar, A. Marcha, E. Simoen, V. Subramanian, C. Claeys, P. Gentil, and S. Cristoloveanu, " High-temperature performance of state of- the-art triple-gate transistor " Microelectron. Reliab, vol. 47, no. 12, pp. 2065-2069, December 2007.
    [16] M. Berthomé, S. Barraud, A. Ionescu, T. Ernst, " Physically-based, multi-architecture, analytical model for junctionless transistors " Proc. of the 12th International Conference on Ultimate Integration on Silicon (ULIS), Cork, Ireland, pp. 11-13, March 2011.
    [17] D. Y. Jeon, S. J. Park, M. Mouis, M. Berthomé, S. Barraud, G. T. Kim and G. Ghibaudo, " Electrical characterization and revisited parameter extraction methodology in junctionless transistors " Proceeding EUROSOI Conference, Montpellier (France), pp. 109-110, January 2012.
    [18] A. K. Goel, T. H. Tan, " High-temperature and self-heating effects in fully depleted SOI MOSFETs ", Microelectronics Journal, vol. 37, no. 9, pp. 963-975, November 2006.
    [19] S. Barraud, " Scaling of trigate junctionless nanowire MOSFET with gate length down to 13 nm ", IEEE Electron Device Letters, vol. 33, no. 9, pp. 1225-1227, September 2012.
    [20] E. Pop, R. Dutton, K. Goodson, " Thermal analysis of ultra-thin body device scaling (SOI and FinFET devices) ", IEEE International Electron Devices Meeting (IEDM), pp. 8-10, 2003.
    [21] Y. K. Choi, " Method for increasing driving current of junctionless transistor " Google Patents, 2018

    無法下載圖示 全文公開日期 2024/07/08 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE