簡易檢索 / 詳目顯示

研究生: 鄭宇伸
Yu-Shen Cheng
論文名稱: 量子點與上轉換奈米粒子之合成及生醫應用
Synthesis of quantum dots and upconversion nanoparticles for biomedical application
指導教授: 張家耀
Jia-Yaw Chang
口試委員: 何明樺
Ming-Hua Ho
黃志清
Chih-Ching Huang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 113
中文關鍵詞: 量子點上轉換奈米粒子離子檢測抗氧化水相改質
外文關鍵詞: quantum dots, upconversion nanoparticles, ion sensing, anti-oxidation, phase transfer
相關次數: 點閱:790下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文結合奈米合成技術與生物醫學應用,以兩種類光學性質截然相反之奈米材料為主軸,分別探討下轉換量子點與上轉換奈米粒子的螢光放光機制,透過表面修飾增加奈米材料的生物相容性,後續嘗試結合上轉換以及下轉換材料的特性來做進一步的應用,並將低毒性之奈米材料應用於細胞顯影、離子檢測以及抗氧化等生醫應用之上。
第一部分:ZCISe/ZnS及ZCISe/ZnS@HA之生物體內離子感測應用。
本實驗以水為溶劑,使用微波輔助法成功地合成出水溶性核殼型四元ZCISe/ZnS量子點,再利用玻尿酸(Hyaluronic acid, HA)進行水相量子點功能化修飾合成ZCISe/ZnS@HA,透過與特定癌細胞表面HA受體之作用,使其具有特異標靶螢光顯影之功能,將ZCISe/ZnS擁有的鉛離子感測能力進一步應用於體外細胞以及斑馬魚之中探討其成效,發現ZCISe/ZnS在生物體內仍具有優秀的鉛離子感測性。
第二部分:上轉換與下轉換奈米粒子結合之UCNPs-Cdots@HA及其生醫應用。
本實驗以稀土元素氟化物AREF4結構為基礎,以熱分解法在有機相的環境合成核殼型鑭系元素摻雜上轉換奈米粒子LiYbF4: RE3+@LiYF4,分別討論不同稀土元素Er3+與Tm3+摻雜以及核殼型結構對於上轉換放光的影響,並探討上轉換放光機制。後續與經HA修飾之水相碳量子點Cdots@HA結合進行水相改質,形成水溶性UCNPs-Cdots@HA使其具有上轉換螢光的同時擁有抗氧化特性,並進行後續生醫應用。經由體外細胞毒性測試證實本研究所製備出之UCNPs-Cdots@HA為低毒性材料,後續利用DPPH以及•OH檢測其抗氧化活性,證實UCNPs-Cdots@HA亦具備有良好的抗氧化活性,再進一步將其應用於保護細胞抵抗氧化應激分析試驗,藉由H2O2作為活性氧來源對細胞造成氧化損傷,發現經材料培養後之細胞能夠有效抵抗H2O2所造成的傷害,並且進行DCFH-DA自由基測試時能夠有效抑制H2O2產生之自由基,再次驗證其不錯的抗氧化特性。


In this study, we present nano-synthesis technology for two types of nanomaterials with opposite optical properties. The fluorescent emission mechanism of down-conversion quantum dots and upconversion nanoparticles was discussed. To promote the biocompatibility of a synthesized nanoparticle we conjugate nanoparticles with hyaluronic acid (HA). Furthermore, the obtained low-toxic nanomaterials were applied for biomedical applications such as cell imaging, ion detection, and antioxidant assay.
Part I: The in vivo ion sensing applications of ZCISe/ZnS and ZCISe/ZnS@HA.
In this experiment, we present a facile microwave-assisted synthesis of ZCISe/ZnS core/shell quaternary quantum dots (QDs) in an aqueous chemistry. Afterward, we applied hyaluronic acid (HA) to functionalize the aqueous phase quantum dots to synthesize ZCISe/ZnS@HA. ZCISe/ZnS can develop cancer-specific targeting ability through the HA receptors on the surface of specific cancer cells. The lead ion sensing ability presented by ZCISe/ZnS was further applied to in vitro cells and zebrafish to discuss its effectiveness, and it was found that ZCISe/ZnS still has excellent lead ion sensing properties in the cell.

Part II: UCNPs-Cdots@HA, the combination of up-conversion and down-conversion nanoparticles and its biomedical applications.
In this report, we present a rare earth element fluoride based on the structure of AREF4. The core-shell type lanthanide-doped up-conversion nanoparticles LiYbF4: RE3+@LiYF4 were synthesized by the thermal decomposition method in the organic phase environment. The rare earth elements Er3+ and Tm3+were used as dopant element. To transfer the organic phase UCNPs into the water, we synthesized the HA conjugate Cdots and then combination of UCNPs with Cdots@HA were done successfully. The water phase UCNPs-Cdots@HA can present /shows upconversion fluorescence and antioxidant properties. This experiment, the antioxidant property for UCNPs-Cdots@HA was carried out by using DPPH and •OH radicals. The results shown that UCNPs-Cdots@HA has good antioxidant property. Furthermore, it was applied to cells in vitro, using H2O2 as a source of reactive oxygen species to cause oxidative damage to the cells. It was found that the cells cultured by the material can effectively resist the damage caused by H2O2, and can effectively inhibit the production of H2O2-induced ROS when performing the DCFH-DA free radical test. Verifying that UCNPs-Cdots@HA can reduce intracellular ROS levels and protect cells from oxidative stress.

摘要 I Abstract II 誌謝 IV 總目錄 V 圖目錄 VIII 表目錄 XIII 第一章、緒論 1 1.1 前言 1 1.2 研究動機與內容 2 第二章、理論基礎及文獻回顧 4 2.1 奈米材料的緣起與發展 4 2.2 奈米材料的基本特性 4 2.2.1 小尺寸效應 4 2.2.2 表面效應 5 2.2.3 奈米晶格的能隙 6 2.2.4 量子侷限效應 7 2.3 上轉換與下轉換奈米材料簡介 10 2.3.1 上轉換奈米粒子與下轉換奈米粒子的基本原理 11 2.3.2 UCNPs與DCNPs奈米粒子的光學性質 13 2.4 鑭系元素摻雜上轉換奈米粒子簡介 14 2.4.1 上轉換機制 15 2.4.2 鑭系元素摻雜上轉換奈米粒子之演進 19 2.4.3 鑭系元素摻雜上轉換奈米粒子之合成 20 2.5 奈米材料光學應用於重金屬離子檢測 23 2.5.1 奈米材料螢光感測的相關策略 24 第三章、實驗儀器與方法 28 3.1 實驗藥品 28 3.2 實驗儀器 32 3.3 實驗步驟 33 3.3.1 Zn-Cu-In-Se四元水相量子點合成(ZCISe) 33 3.3.2 硫化鋅(ZnS)母液的製備 33 3.3.3 核殼型水相量子點合成(ZCISe/ZnS) 33 3.3.4 核殼型水相量子點與玻尿酸鍵結之合成(ZCISe/ZnS@HA) 34 3.3.5 稀土元素銩摻雜上轉換奈米粒子合成(LiYbF4: Tm3+) 35 3.3.6 稀土元素鉺摻雜上轉換奈米粒子合成(LiYbF4: Er3+) 35 3.3.7 核殼型上轉換奈米粒子合成(LiYbF4: RE3+@LiYF4) 36 3.3.8 水相碳量子點合成(Cdots) 37 3.3.9 水相碳量子點與玻尿酸鍵結之合成(Cdots@HA) 37 3.3.10 Cdots@HA水相改質LiYbF4: RE3+@LiYF4上轉換奈米粒子 38 3.4 抗氧化活性檢測方法 39 3.4.1 清除DPPH自由基能力檢測 39 3.4.2 清除·OH自由基能力檢測 39 3.5 細胞培養與細胞實驗 40 3.5.1 培養液(medium)與PBS之配置 40 3.5.2 解凍細胞(Cell Deforst) 41 3.5.3 繼代培養(Cell Culture) 41 3.5.4 細胞計數(Cell Counting) 42 3.5.5 冷凍細胞(Cell Cryopreservation) 42 3.5.6 ZCISe/ZnS@HA於細胞之離子感測螢光顯影試片製作 43 3.5.7 ZCISe/ZnS於斑馬魚離子感測之螢光顯影 44 3.5.8 UCNPs-Cdots@HA於體外細胞毒性測試 45 3.5.9 UCNPs-Cdots@HA保護細胞抵抗氧化應激分析試驗 46 3.5.10 UCNPs-Cdots@HA保護細胞抵抗氧化應激之生物顯影 47 第四章、實驗結果與討論 49 4.1 ZCISe/ZnS水相量子點於生物體內離子感測應用 49 4.1.1 ZCISe/ZnS@HA水相量子點於癌細胞之離子檢測 51 4.1.2 ZCISe/ZnS水相量子點於斑馬魚之離子檢測 54 4.2 LiYbF4: RE3+@LiYF4上轉換奈米粒子製備與鑑定 56 4.2.1 UCNPs於摻雜不同稀土元素RE3+之變色機制探討 58 4.2.2 LiYbF4:RE3+/LiYF4核殼型UCNPs之合成與製備 62 4.2.3 LiYbF4: RE3+@LiYF4核殼型UCNPs之型態與結構分析 64 4.3 水相改質UCNPs-Cdots@HA製備與鑑定 68 4.3.1 Cdots@HA之合成與製備 68 4.3.2 UCNPs-Cdots@HA水相改質與表面功能化之介紹 70 4.3.3 水相改質UCNPs-Cdots@HA之型態與結構分析 72 4.4 抗氧化活性應用 75 4.4.1 清除DPPH自由基能力檢測 75 4.4.2 清除•OH自由基能力檢測 77 4.4.3 Cdots之抗氧化機制探討 79 4.5 UCNPs-Cdots@HA之生物醫學應用 80 4.5.1 體外細胞毒性測試 80 4.5.2 保護細胞抵抗氧化應激分析試驗 81 4.5.3 保護細胞抵抗氧化應激之生物顯影 84 第五章、結果與未來展望 87 第六章、參考文獻 89

[1] 楊忠平、陳儒毅、林志鴻,奈米新世界-奈米博物館-古代奈米技術,2014。
[2] 馬振基,奈米材料科技原理與應用,全華圖書股份有限公司,2012。
[3] 賴炤銘、李錫隆,奈米材料的特殊效應與應用 CHEMISTRY (THE CHINESE CHEM. SOC., TAIPEI), 2003, 61, 585.
[4] 羅吉宗、戴明鳳、林鴻明、鄭振宗、蘇程裕,奈米科技導論,全華圖書股份有限公司,2008。
[5] Manhat, B. A. Understanding the Emission from Semiconductor Nanoparticles. Dissertations and Theses. Portland State University, 2012,
[6] Wang, Y.; Herron, N. Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties. The Journal of Physical Chemistry, 1991, 95, 525.
[7] Rabouw, F. T.; de Mello Donega, C. Excited-state dynamics in colloidal semiconductor nanocrystals, in Photoactive Semiconductor Nanocrystal Quantum Dots. 2017, Springer: 1.
[8] Liu, R.-S., Phosphors, up conversion nano particles, quantum dots and their applications. 2017: Springer.
[9] Green, M. Solution routes to III-V semiconductor quantum dots: Nanotechnology: Quatum dots. Current opinion in solid state & materials science, 2002, 6, 355.
[10] Zhou, J.; Cao, Z.; Panwar, N.; Hu, R.; Wang, X.; Qu, J.; Tjin, S. C.; Xu, G.; Yong, K.-T. Functionalized gold nanorods for nanomedicine: Past, present and future. Coordination Chemistry Reviews, 2017, 352, 15.
[11] Loo, J. F.-C.; Chien, Y.-H.; Yin, F.; Kong, S.-K.; Ho, H.-P.; Yong, K.-T. Upconversion and downconversion nanoparticles for biophotonics and nanomedicine. Coordination Chemistry Reviews, 2019, 400, 213042.
[12] Haase, M.; Schäfer, H. Upconverting nanoparticles. Angewandte Chemie International Edition, 2011, 50, 5808.
[13] Nyk, M.; Wawrzynczyk, D.; Parjaszewski, K.; Samoc, M. Spectrally resolved nonlinear optical response of upconversion lanthanide-doped nayf4 nanoparticles. The Journal of Physical Chemistry C, 2011, 115, 16849.
[14] Damasco, J. A.; Chen, G.; Shao, W.; Ågren, H.; Huang, H.; Song, W.; Lovell, J. F.; Prasad, P. N. Size-tunable and monodisperse Tm3+/Gd3+-doped hexagonal NaYbF4 nanoparticles with engineered efficient near infrared-to-near infrared upconversion for in vivo imaging. ACS applied materials & interfaces, 2014, 6, 13884.
[15] Naczynski, D.; Tan, M.; Zevon, M.; Wall, B.; Kohl, J.; Kulesa, A.; Chen, S.; Roth, C.; Riman, R.; Moghe, P. Rare-earth-doped biological composites as in vivo shortwave infrared reporters. Nature communications, 2013, 4, 1.
[16] Fischer, S.; Mehlenbacher, R. D.; Lay, A.; Siefe, C.; Alivisatos, A. P.; Dionne, J. A. Small alkaline-earth-based core/shell nanoparticles for efficient upconversion. Nano Letters, 2019, 19, 3878.
[17] Thévenaz, D. C.; Lee, S. H.; Guignard, F.; Balog, S.; Lattuada, M.; Weder, C.; Simon, Y. C. Single‐Component Upconverting Polymeric Nanoparticles. Macromolecular Rapid Communications, 2016, 37, 826.
[18] Wang, Z.; Meijerink, A. Concentration quenching in upconversion nanocrystals. The Journal of Physical Chemistry C, 2018, 122, 26298.
[19] Wen, S.; Zhou, J.; Zheng, K.; Bednarkiewicz, A.; Liu, X.; Jin, D. Advances in highly doped upconversion nanoparticles. Nature communications, 2018, 9, 1.
[20] Shao, W.; Chen, G.; Ohulchanskyy, T. Y.; Kuzmin, A.; Damasco, J.; Qiu, H.; Yang, C.; Ågren, H.; Prasad, P. N. Lanthanide‐Doped Fluoride Core/Multishell Nanoparticles for Broadband Upconversion of Infrared Light. Advanced Optical Materials, 2015, 3, 575.
[21] Sun, L.; Ge, X.; Liu, J.; Qiu, Y.; Wei, Z.; Tian, B.; Shi, L. Multifunctional nanomesoporous materials with upconversion (in vivo) and downconversion (in vitro) luminescence imaging based on mesoporous capping UCNPs and linking lanthanide complexes. Nanoscale, 2014, 6, 13242.
[22] Ma, D.; Xu, X.; Hu, M.; Wang, J.; Zhang, Z.; Yang, J.; Meng, L. Rare‐Earth‐Based Nanoparticles with Simultaneously Enhanced Near‐Infrared (NIR)‐Visible (Vis) and NIR‐NIR Dual‐Conversion Luminescence for Multimodal Imaging. Chemistry–An Asian Journal, 2016, 11, 1050.
[23] Cheng, T.; Marin, R.; Skripka, A.; Vetrone, F. Small and Bright Lithium-Based Upconverting Nanoparticles. J Am Chem Soc, 2018, 140, 12890.
[24] Zou, Q.; Huang, P.; Zheng, W.; You, W.; Li, R.; Tu, D.; Xu, J.; Chen, X. Cooperative and non-cooperative sensitization upconversion in lanthanide-doped LiYbF4 nanoparticles. Nanoscale, 2017, 9, 6521.
[25] Chen, J.; Zhao, J. X. Upconversion nanomaterials: synthesis, mechanism, and applications in sensing. Sensors (Basel), 2012, 12, 2414.
[26] Chen, G.; Qiu, H.; Prasad, P. N.; Chen, X. Upconversion nanoparticles: design, nanochemistry, and applications in theranostics. Chem Rev, 2014, 114, 5161.
[27] Lin, C.; Berry, M. T.; Anderson, R.; Smith, S.; May, P. S. Highly luminescent NIR-to-visible upconversion thin films and monoliths requiring no high-temperature treatment. Chemistry of Materials, 2009, 21, 3406.
[28] Sarkar, S.; Adusumalli, V. N.; Mahalingam, V.; Capobianco, J. A. Intense NIR emissions at 0.8 mum, 1.47 mum, and 1.53 mum from colloidal LiYbF4:Ln(3+) (Ln = Tm(3+) and Er(3+)) nanocrystals. Phys Chem Chem Phys, 2015, 17, 17577.
[29] Chen, G.; Ohulchanskyy, T. Y.; Kumar, R.; Ågren, H.; Prasad, P. N. Ultrasmall monodisperse NaYF4: Yb3+/Tm3+ nanocrystals with enhanced near-infrared to near-infrared upconversion photoluminescence. ACS nano, 2010, 4, 3163.
[30] Chen, G.; Ohulchanskyy, T. Y.; Liu, S.; Law, W.-C.; Wu, F.; Swihart, M. T.; Ågren, H.; Prasad, P. N. Core/shell NaGdF4: Nd3+/NaGdF4 nanocrystals with efficient near-infrared to near-infrared downconversion photoluminescence for bioimaging applications. ACS nano, 2012, 6, 2969.
[31] Chen, G.; Shen, J.; Ohulchanskyy, T. Y.; Patel, N. J.; Kutikov, A.; Li, Z.; Song, J.; Pandey, R. K.; Ågren, H.; Prasad, P. N. (α-NaYbF4: Tm3+)/CaF2 core/shell nanoparticles with efficient near-infrared to near-infrared upconversion for high-contrast deep tissue bioimaging. ACS nano, 2012, 6, 8280.
[32] Diamente, P. R.; Raudsepp, M.; Van Veggel, F. C. Dispersible Tm3+‐doped nanoparticles that exhibit strong 1.47 μm photoluminescence. Advanced Functional Materials, 2007, 17, 363.
[33] Mai, H.-X.; Zhang, Y.-W.; Sun, L.-D.; Yan, C.-H. Size-and phase-controlled synthesis of monodisperse NaYF4: Yb, Er nanocrystals from a unique delayed nucleation pathway monitored with upconversion spectroscopy. The Journal of Physical Chemistry C, 2007, 111, 13730.
[34] Mai, H.-X.; Zhang, Y.-W.; Si, R.; Yan, Z.-G.; Sun, L.-d.; You, L.-P.; Yan, C.-H. High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties. Journal of the American Chemical Society, 2006, 128, 6426.
[35] Li, C.; Quan, Z.; Yang, J.; Yang, P.; Lin, J. Highly uniform and monodisperse β-NaYF4: Ln3+ (Ln= Eu, Tb, Yb/Er, and Yb/Tm) hexagonal microprism crystals: hydrothermal synthesis and luminescent properties. Inorganic chemistry, 2007, 46, 6329.
[36] Li, C.; Yang, J.; Quan, Z.; Yang, P.; Kong, D.; Lin, J. Different microstructures of β-NaYF4 fabricated by hydrothermal process: effects of pH values and fluoride sources. Chemistry of Materials, 2007, 19, 4933.
[37] Liu, X.; Zhao, J.; Sun, Y.; Song, K.; Yu, Y.; Du, C.; Kong, X.; Zhang, H. Ionothermal synthesis of hexagonal-phase NaYF4: Yb 3+, Er 3+/Tm 3+ upconversion nanophosphors. Chemical Communications, 2009, 6628.
[38] Kousar, S.; Javed, M. Evaluation of acute toxicity of copper to four fresh water fish species. International journal of agriculture and biology, 2012, 14,
[39] Satarug, S.; Moore, M. R. Adverse health effects of chronic exposure to low-level cadmium in foodstuffs and cigarette smoke. Environmental health perspectives, 2004, 112, 1099.
[40] Waisberg, M.; Joseph, P.; Hale, B.; Beyersmann, D. Molecular and cellular mechanisms of cadmium carcinogenesis. Toxicology, 2003, 192, 95.
[41] Gutknecht, J. Inorganic mercury (Hg 2+) transport through lipid bilayer membranes. The Journal of Membrane Biology, 1981, 61, 61.
[42] Tchounwou, P. B.; Ayensu, W. K.; Ninashvili, N.; Sutton, D. Environmental exposure to mercury and its toxicopathologic implications for public health. Environmental toxicology, 2003, 18, 149.
[43] Linnik, R. P.; Zaporozhets, O. A. Solid-phase reagent for molecular spectroscopic determination of heavy metal speciation in natural water. Analytical and bioanalytical chemistry, 2003, 375, 1083.
[44] Yan, B.; Worsfold, P. J. Determination of cobalt (II), copper (II) and iron (II) by ion chromatography with chemiluminescence detection. Analytica chimica acta, 1990, 236, 287.
[45] Minami, T.; Atsumi, K.; Ueda, J. Determination of cobalt and nickel by graphite-furnace atomic absorption spectrometry after coprecipitation with scandium hydroxide. Analytical sciences, 2003, 19, 313.
[46] Hutton, E. A.; van Elteren, J. T.; Ogorevc, B.; Smyth, M. R. Validation of bismuth film electrode for determination of cobalt and cadmium in soil extracts using ICP–MS. Talanta, 2004, 63, 849.
[47] Yan, F.; Zou, Y.; Wang, M.; Mu, X.; Yang, N.; Chen, L. Highly photoluminescent carbon dots-based fluorescent chemosensors for sensitive and selective detection of mercury ions and application of imaging in living cells. Sensors and Actuators B: Chemical, 2014, 192, 488.
[48] Yuan, C.; Zhang, K.; Zhang, Z.; Wang, S. Highly selective and sensitive detection of mercuric ion based on a visual fluorescence method. Analytical chemistry, 2012, 84, 9792.
[49] Saleem, M.; Lee, K.-H. Selective fluorescence detection of Cu2+ in aqueous solution and living cells. Journal of luminescence, 2014, 145, 843.
[50] Chen, Y.; Rosenzweig, Z. Luminescent CdS quantum dots as selective ion probes. Analytical chemistry, 2002, 74, 5132.
[51] Liu, Y.; Deng, M.; Zhu, T.; Tang, X.; Han, S.; Huang, W.; Shi, Y.; Liu, A. The synthesis of water-dispersible zinc doped AgInS2 quantum dots and their application in Cu2+ detection. Journal of luminescence, 2017, 192, 547.
[52] Liu, S.; Li, Y.; Su, X. Determination of copper (II) and cadmium (II) based on ternary CuInS 2 quantum dots. Analytical Methods, 2012, 4, 1365.
[53] Zi, L.; Huang, Y.; Yan, Z.; Liao, S. Thioglycolic acid-capped CuInS2/ZnS quantum dots as fluorescent probe for cobalt ion detection. Journal of luminescence, 2014, 148, 359.
[54] Zhu, F.; Zhu, J.; Zhang, Z. Selective detection of glufosinate using CuInS 2 quantum dots as a fluorescence probe. RSC advances, 2017, 7, 48077.
[55] Liu, S.; Shi, F.; Zhao, X.; Chen, L.; Su, X. 3-Aminophenyl boronic acid-functionalized CuInS2 quantum dots as a near-infrared fluorescence probe for the determination of dopamine. Biosensors and Bioelectronics, 2013, 47, 379.
[56] Liu, Z.; Ma, Q.; Wang, X.; Lin, Z.; Zhang, H.; Liu, L.; Su, X. A novel fluorescent nanosensor for detection of heparin and heparinase based on CuInS2 quantum dots. Biosensors and Bioelectronics, 2014, 54, 617.
[57] Liu, Z.; Li, G.; Ma, Q.; Liu, L.; Su, X. A near-infrared turn-on fluorescent nanosensor for zinc (II) based on CuInS 2 quantum dots modified with 8-aminoquinoline. Microchimica Acta, 2014, 181, 1385.
[58] Wang, X.; Guo, X. Ultrasensitive Pb 2+ detection based on fluorescence resonance energy transfer (FRET) between quantum dots and gold nanoparticles. Analyst, 2009, 134, 1348.
[59] Zhao, Q.; Rong, X.; Ma, H.; Tao, G. Dithizone functionalized CdSe/CdS quantum dots as turn-on fluorescent probe for ultrasensitive detection of lead ion. Journal of hazardous materials, 2013, 250, 45.
[60] 徐佑任,水相四元量子點製備與離子檢測及細胞影像應用,2018。
[61] Arppe, R.; Hyppänen, I.; Perälä, N.; Peltomaa, R.; Kaiser, M.; Würth, C.; Christ, S.; Resch-Genger, U.; Schäferling, M.; Soukka, T. Quenching of the upconversion luminescence of NaYF 4: Yb 3+, Er 3+ and NaYF 4: Yb 3+, Tm 3+ nanophosphors by water: the role of the sensitizer Yb 3+ in non-radiative relaxation. Nanoscale, 2015, 7, 11746.
[62] Zhang, S.; Wei, S.-H.; Zunger, A.; Katayama-Yoshida, H. Defect physics of the CuInSe 2 chalcopyrite semiconductor. Physical Review B, 1998, 57, 9642.
[63] Nose, K.; Omata, T.; Otsuka-Yao-Matsuo, S. Colloidal synthesis of ternary copper indium diselenide quantum dots and their optical properties. The Journal of Physical Chemistry C, 2009, 113, 3455.
[64] NHS and sulfo-NHS. Thermoscientific-intstructions,
[65] Santhanam, S.; Liang, J.; Baid, R.; Ravi, N. Investigating thiol‐modification on hyaluronan via carbodiimide chemistry using response surface methodology. Journal of Biomedical Materials Research Part A, 2015, 103, 2300.
[66] Xie, J.; Wang, N.; Dong, X.; Wang, C.; Du, Z.; Mei, L.; Yong, Y.; Huang, C.; Li, Y.; Gu, Z. Graphdiyne nanoparticles with high free radical scavenging activity for radiation protection. ACS applied materials & interfaces, 2018, 11, 2579.
[67] Ferreira, C. A.; Ni, D.; Rosenkrans, Z. T.; Cai, W. Scavenging of reactive oxygen and nitrogen species with nanomaterials. Nano research, 2018, 11, 4955.
[68] Halliwell, B. Oxidants and human disease: some new concepts 1. The FASEB Journal, 1987, 1, 358.
[69] Jenner, P. Oxidative stress in Parkinson's disease. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society, 2003, 53, S26.
[70] Sayre, L. M.; Smith, M. A.; Perry, G. Chemistry and biochemistry of oxidative stress in neurodegenerative disease. Current medicinal chemistry, 2001, 8, 721.
[71] Asami, S.; Manabe, H.; Miyake, J.; Tsurudome, Y.; Hirano, T.; Yamaguchi, R.; Itoh, H.; Kasai, H. Cigarette smoking induces an increase in oxidative DNA damage, 8-hydroxydeoxyguanosine, in a central site of the human lung. Carcinogenesis, 1997, 18, 1763.
[72] Dut, R.; Dizdar, E.; Birben, E.; Sackesen, C.; Soyer, O.; Besler, T.; Kalayci, O. Oxidative stress and its determinants in the airways of children with asthma. Allergy, 2008, 63, 1605.
[73] Ercan, H.; Birben, E.; Dizdar, E. A.; Keskin, O.; Karaaslan, C.; Soyer, O. U.; Dut, R.; Sackesen, C.; Besler, T.; Kalayci, O. Oxidative stress and genetic and epidemiologic determinants of oxidant injury in childhood asthma. Journal of Allergy and Clinical Immunology, 2006, 118, 1097.
[74] Zhao, S.; Lan, M.; Zhu, X.; Xue, H.; Ng, T.-W.; Meng, X.; Lee, C.-S.; Wang, P.; Zhang, W. Green synthesis of bifunctional fluorescent carbon dots from garlic for cellular imaging and free radical scavenging. ACS applied materials & interfaces, 2015, 7, 17054.
[75] Musa, K. H.; Abdullah, A.; Al-Haiqi, A. Determination of DPPH free radical scavenging activity: application of artificial neural networks. Food chemistry, 2016, 194, 705.
[76] Rhee, S. G.; Woo, H. A.; Kil, I. S.; Bae, S. H. Peroxiredoxin functions as a peroxidase and a regulator and sensor of local peroxides. Journal of Biological Chemistry, 2012, 287, 4403.
[77] Qiu, Y.; Wang, Z.; Owens, A. C.; Kulaots, I.; Chen, Y.; Kane, A. B.; Hurt, R. H. Antioxidant chemistry of graphene-based materials and its role in oxidation protection technology. Nanoscale, 2014, 6, 11744.
[78] Ruiz, V.; Yate, L.; García, I.; Cabanero, G.; Grande, H.-J. Tuning the antioxidant activity of graphene quantum dots: Protective nanomaterials against dye decoloration. Carbon, 2017, 116, 366.
[79] Wang, Y.; Kong, W.; Wang, L.; Zhang, J. Z.; Li, Y.; Liu, X.; Li, Y. Optimizing oxygen functional groups in graphene quantum dots for improved antioxidant mechanism. Physical Chemistry Chemical Physics, 2019, 21, 1336.
[80] 蔡依雯,異原子摻雜碳量子點之光可調性研究及其應用,2019。

無法下載圖示 全文公開日期 2025/08/18 (校內網路)
全文公開日期 2025/08/18 (校外網路)
全文公開日期 2025/08/18 (國家圖書館:臺灣博碩士論文系統)
QR CODE