簡易檢索 / 詳目顯示

研究生: 許令杰
Ling-Chieh Hsu
論文名稱: 晶片化二維週期性合成傳輸線之優化設計與反射式信號回溯陣列之調變機制設計
Optimization of On-chip Two-dimensional Periodic Synthesized Transmission Lines and a Study of the Modulation Scheme for Reflection-type Retrodirective Arrays
指導教授: 馬自莊
Tzyh-ghuang Ma
口試委員: 楊成發
Chang-fa Yang
廖文照
Wen-jiao Liao
曾昭雄
Chao-hsiung Tseng
賴季暉
Chi-hui Lai
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 83
中文關鍵詞: 二維週期性合成傳輸線枝幹耦合器鼠競耦合器威爾京森分波器整合被動元件製程信號回溯陣列相移鍵控調變調變器
外文關鍵詞: two-dimensional synthesized transmission line, branch line coupler, rat-race coupler, Wilkinson power divider, integrated passive device, retro-directive array, phase shift keying, modulator
相關次數: 點閱:382下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文共有獨立之兩研究主題。第一部分為「晶片化二維週期性合成傳輸線」之優化設計。該二維週期性合成傳輸線之電路單元方正對稱,可於晶片製程有限空間內進行任意佈局,實現微小化、高佈局密度之微型化電路設計,本論文以前人設計為基礎,進一步提出直通與轉折電路單元分別設計之概念,以實現晶片化二維週期性合成傳輸線之優化設計,使其更加符合設計理念且擁有更良好之響應。吾人進一步運用此二維週期性合成傳輸線實現晶片化枝幹耦合器、鼠境耦合器以及威爾京森分波器等被動射頻電路,經比較後確實擁有更佳之縮小化能力及良好之電氣響應,成功達到優化之目的。
本論文之第二部分,則提出可應用於「反射式信號回溯陣列」之調變機制設計。吾人使用印刷電路板製程,以場效電晶體作為開關,實現二位元相移鍵控調變器,並進一步將其接上枝幹耦合器與延遲線,實現四位元相移鍵控調變器。經實驗驗證其效能,此兩款調變器之位元速率分別可達每秒四百萬位元與每秒八百萬位元,其均方根誤差向量振幅皆於10%左右。最後,吾人將該調變器與前人所設計之反射式信號回溯陣列進行整合,經實驗證實,此調變器不僅不會影響回溯陣列之信號反向傳輸能力,且確實能於信號回傳時將本地資訊透過調變機制送至入射端,其位元速率同樣分別可達每秒四百萬位元與每秒八百萬位元,而均方根誤差向量振幅則皆於12%左右。


This thesis consists of two independent researches. In the first part, an optimization of the two-dimensional periodic synthesized transmission lines is performed using the integrated passive device (IPD) process. Benefitting from the square footprint and symmetrical structure of the proposed unit cell, the two-dimensional synthesized line provides extraordinarily routing flexibility in the layout arrangement. The periodic cells and the corner cells are separately treated to take into account its unique discontinuity effects. An on-chip branch line coupler, rat-race coupler and Wilkinson power divider are developed by using the proposed two-dimensional periodic synthesized lines with not only a substantial reduced size but also good circuit responses.
Secondly, the modulation scheme for a reflection-type retrodirective array (RDA) is studied. A binary phase shift keying (BPSK) modulator is first realized using the field effect transistor (FET) and then integrated with a hybrid coupler to achieve a quadrature phase shift keying (QPSK) modulator. The bit rates of the BPSK and QPSK modulators can, respectively, reach 4 Mbps and 8Mbps while the error vector magnitudes (EVMs) remain about 10%. The developed modulators are directly integrated with a reflection-type RDA to fulfill the design goal. The experiment results validate that the reflection-type RDA with modulators can retransmit the signal back to the incident source with its own information encoded. The measured bit rates of the RDA using QPSK modulators can also reach up to 8 Mbps and the EVM is kept below 13%.

摘要 I Abstract III 誌謝 V 目錄 VII 圖目錄 IX 表目錄 XII 第一章 緒論 1 1.1 研究動機與目的 1 1.2 文獻探討 2 1.3 研究貢獻 4 1.4 論文組織 5 第二章 晶片化二維合成傳輸線之優化設計 6 2.1 前言 6 2.2 矽基板整合被動元件製程之簡介 7 2.3 二維週期性合成傳輸線 8 2.3.1 直通單元設計原理 8 2.3.2 轉折單元設計原理 12 2.3.3 電路佈局 14 2.3.3.1 直線與轉角電路單元 14 2.3.3.2 四分之一波長合成傳輸線 17 2.3.4 模擬與量測結果 20 2.4 枝幹耦合器、鼠競耦合器與威爾京森分波器之晶片設計 26 2.4.1 電路佈局 26 2.4.2 模擬與量測結果 30 2.5 結語 39 第三章 反射式信號回溯陣列之調變機制設計 40 3.1 前言 40 3.2 反射式信號回溯陣列之簡介 41 3.3 相移鍵控調變器 43 3.3.1 設計原理與電路架構 43 3.3.1.1 二位元相移鍵控調變器 (BPSK modulator) 43 3.3.1.2 四位元相移鍵控調變器 (QPSK modulator) 46 3.3.2 量測與模擬結果 49 3.4 整合反射式信號回溯陣列之初步驗證 59 3.4.1 電路架構 59 3.4.2 實驗驗證 62 3.5 結語 75 第四章 結論 76 4.1 總結 76 4.2 未來發展 76 參考文獻 78

[1] I. Toyoda, T. Hirota, T. Hiraoka, and T. Tokumitsu, “Multilayer MMIC branch-line coupler and broad-side coupler,” in Microw. MillimeterWave Monolithic Circuits Symp. Dig., 1992, pp. 79-82.
[2] Y.-C. Chiang and C.-Y. Chen, “Design of a wide-band lumped-element 3-dB quadrature coupler,” IEEE Trans. Microw. Theory Techn., vol. 49, no. 3, pp. 476-479, Mar. 2001.
[3] A. Lai, C. Caloz, and T. Itoh, “Composite right/left-handed transmission line metamaterials,” IEEE Microw. Mag., vol. 5, no. 3, pp. 34-50, Sep. 2004.
[4] I.-H. Lin, C. Caloz, and T. Itoh, “A branch-line coupler with two arbitrary operating frequencies using left-handed transmission lines,” in IEEE MTT-S Int. Microw. Symp. Dig., 2003, pp.325-327.
[5] P.-L. Chi and T. Itoh, “Miniaturized dual-band directional couplers using composite right/left-handed transmission structures and their applications in beam pattern diversity systems,” IEEE Trans. Microw. Theory Techn., vol. 57, no. 5, pp. 1207-1215, May. 2009.
[6] K.-O. Sun, S.-J. Ho, C.-C. Yen and D. van der Weide, “A compact branch-line coupler using discontinuous microstrip lines,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 8, pp. 519-520, Aug. 2005.
[7] K. Hettak, G. A. Morin, and M.G. Stubbs, “Compact MMIC CPW and asymmetric CPS branch-line couplers and Wilkinson dividers using shunt and series stub loading, ” IEEE Trans. Microwave Theory Techn., vol. 53, no. 5, pp. 1624-1635, May 2005.
[8] C.-C. Chen, C.-K. C. Tzuang, “Synthetic quasi-TEM meandered transmission lines for compacted microwave integrated circuits,” IEEE Trans. Microw. Theory Techn., vol. 52, no. 6, pp. 1637-1647, Jun. 2004.
[9] H.-W. Hsu, C.-H. Lai and T.-G. Ma, “A miniaturized dual-mode ring bandpass filter,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 10, pp. 542-544, Oct. 2010.
[10] C.-W. Wang, T.-G. Ma, and C.-F. Yang, “A new planar artificial transmission line and its applications to a miniaturized Butler matrix,” IEEE Trans. Microw. Theory Techn., vol. 55, no. 12, pp. 2792-2801, Dec. 2007.
[11] C.-C. Wang, C.-H. Lai and T.-G. Ma, “Novel uniplanar synthesized coplanar waveguide and the application to miniaturized rat-race coupler,” in IEEE MTT-S Int. Microw. Symp. Dig., 2010, pp.708-711.
[12] 蘇柏丰, 以二維合成傳輸線實現微型化微波被動元件, 國立台灣科技大學電機工程研究所, 碩士論文, 民國102.
[13] 吳宜隆, 極簡式巴倫器與二維合成傳輸線之晶片實現, 國立台灣科技大學電機工程研究所, 碩士論文, 民國103.
[14] Y. Li and V. Jandhyala, “Design of retrodirective antenna arrays for short-range wireless power transmission,” IEEE Trans. Antennas Propag., vol. 60, no. 1, pp. 206-211, Jan. 2012.
[15] S. J. Chung, S. M. Chen and Y. C. Lee, “A novel bi-directional amplifier with applications in active Van Atta retrodirective arrays,” IEEE Trans. Microw. Theory Techn., vol. 51, no. 2, pp. 542-547, Feb. 2003.
[16] Y.-J. Ren and K. Chang, “New 5.8-GHz circularly polarized retrodirective rectenna arrays for wireless power transmission,” IEEE Trans. Microw. Theory Techn., vol. 54, no. 7, pp. 2970-2976, Jul. 2006.
[17] J. A. Vitaz, A. M. Buerkle, and K. Sarabandi, “Tracking of metallic objects using retro-reflective array at 26 GHz,” IEEE Trans. Antennas Propag., vol. 58, no. 11, pp. 3539-3544, Nov. 2010.
[18] L. Chiu, Q. Xue, and C.-H. Chan, “Phase-conjugated arrays using low conversion-loss resistive phase-conjugating mixers and stub-loaded patch antennas,” IEEE Trans. Microw. Theory Techn., vol. 56, no. 8, pp.1764-1773, Aug. 2008.
[19] S.-C. Yen and T.-H. Chu, “A retro-directive array antenna with phase conjugation circuit using sub-harmonically injection-locked self-oscillating mixers,” IEEE Trans. Antennas Propag., vol. 52, no. 1, pp. 154-164, Jan. 2004.
[20] T. Brabetz, V. F. Fusco, and S. Karode, “Balanced subharmonic mixers for retrodirective-array applications,” IEEE Trans. Microw. Theory Techn., vol. 49, no. 3, pp. 465-469, Mar. 2001.
[21] R. Y. Miyamoto, Y. Qian, and T. Itoh, “An active integrated retrodirective transponder for remote information retrieval-on-demand,” IEEE Trans. Microw. Theory Techn., vol. 49, no.9, pp. 1658-1662, Sept. 2001.
[22] R. Y. Miyamoto and T. Itoh, “Retrodirective arrays for wireless communications,” IEEE Microw. Mag., vol. 3, pp. 71-79, Mar. 2002.
[23] S.-N. Hsieh and T.-H. Chu, “Linear Retro-directive array antenna using 90° hybrids,” IEEE Trans. Antennas Propag., vol. 56, no. 6, pp. 1573-1580, Jun. 2008.
[24] S.-J Chung, T.-C. Chou, and Y.-N Chiu, “A novel card-type transponder designed using retrodirective antenna array,” in IEEE MTT-S Int. Microw. Symp. Dig., 2001, pp.1123-1126.
[25] H. Matsumoto, “Research on solar power satellites and microwave power transmission in japan,” IEEE Microw. Mag., vol. 3, no. 4, pp.36-45, Dec. 2002.
[26] S. Lim, K. M. K. H. Leong, and T. Itoh, “Adaptive power controllable retrodirective array system for wireless sensor server applications,” IEEE Trans. Microw. Theory Techn., vol. 53, no. 12, pp. 3735-3743, Dec. 2005.
[27] M. Cohn, “A millimeter wave retrodirective transponder for collision/obstacle avoidance and navigation/location,” in Proc. IEEE-IEE Vehicle Navigation Information Systems Conf., 1993, pp.534-538.
[28] B. Zhang, Y.-Z. Xiong, L. Weng, and S. Hu, “A switch-based ASK modulator for 10 Gbps 135 GHz communication by 0.13um MOSFET,” IEEE Microw. Wireless Compon. Lett., vol. 22, no. 8, pp. 415-417, Aug. 2012.
[29] H.-Y. Chang, M.-F. Lei, C.-S. Lin, Y.-H. Cho, Z.-M. Tsai, and H. Wang, “A 46-GHz direct wide modulation bandwidth ASK modulator in 0.13-um CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 9, pp. 691-693, Sep. 2007.
[30] A. E. Ashtiani, N. Sueng-il, A. d’Espona, S. Lucyszyn, and I. D. Robertson, “Direct multilevel carrier modulation using millimeter-wave balanced vector modulators,” IEEE Trans. Microw. Theory Techn., vol. 46, no. 12, pp. 2611-2619, Dec. 1998.
[31] D. S. McPherson and S. Lucyszyn, “Vector modulator for W-band software radar techniques,” IEEE Trans. Microwave Theory Techn., vol. 49, no. 8, pp. 1451-1461, Aug. 2001.
[32] T. Kawanishi, K. Higuma, T. Fujita, J. Ichikawa, T. Sakamoto, S. Shinada, and M. Izutsu, “BLiNbO3 high-speed optical FSK modulator,” Electron. Lett., vol. 40, no. 11, pp. 691-692, May 2004.
[33] S. Cho and A. P. Chandrakasan, “A 6.5-GHz energy-efficient BFSK modulator for wireless sensor applications,” IEEE J. Solid-State Circuits, vol. 39, no. 5, pp. 731-739, May. 2004.
[34] K. Miyaguchi, M. Hieda, K. Nakahara, H. Kurusu, M. Nii, M. Kasahara, T. Takagi, and S. Urasaki, “An ultra-broad-band reflection-type phase-shifter MMIC with series and parallel circuits,” IEEE Trans. Microw. Theory Techn., vol. 49, no. 12, pp. 2446-2452, Dec. 2001.
[35] C.-S. Lin, S.-F. Chang, C.-C. Chang, and Y.-H. Shu, “Design of a reflection-type phase shifter with wide relative phase and constant insertion loss,” IEEE Trans. Microw. Theory Techn., vol. 55, no. 9, pp. 1862-1868, Sep. 2007.
[36] D. Kim, Y. Choi, M. G. Allen, J. S. Kenney, and D. Kiesling, “A wide-band reflection-type phase shifter at S-band using BST coated substrate,” IEEE Trans. Microw. Theory Techn., vol. 50, no. 12, pp. 2903-2909, Dec. 2002.
[37] W. R. Eisenstadt and Y. Eo, “S-parameter-based IC interconnect transmission line characterization,” IEEE Trans. Comp., Hybrids, Manufact. Technol., vol. 15, no. 4, pp. 483-490, Aug. 1992.
[38] I. Haroun, J. Wight, C. Plett, A. Fathy, and D.-C. Chang, “Experimental analysis of a 60 GHz compact EC-CPW branch-line coupler for mm-wave CMOS radios,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 4, pp. 211-213, Apr. 2010.
[39] C.-Y. Kuo, A. Y.-K. Chen, C.-M. Lee, and C.-H. Luo, “Miniature 60 GHz slow-wave CPW branch-line coupler using 90 nm digital CMOS process,” Electron. Lett., vol. 47, no. 16, pp. 924-925, Aug. 2011.
[40] J.-D. Jin and S. S.-H. Hsu, “A 0.18-um CMOS balanced amplifier for 24-GHz applications,” IEEE J. Solid-State Circuits, vol. 43, no. 2, pp.440-445, Feb. 2008.
[41] T.-N. Kuo, Y.-S. Lin, C.-H. Wang, and C. H. Chen, “A compact LTCC branch-line coupler using modified-T equivalent-circuit model for transmission line,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 2, pp. 90-92, Feb. 2006.
[42] Y.-C. Tseng and T.-G. Ma, “On-chip X-band branch-line coupler using glass integrated passive device technology,” Electron. Lett., vol. 48, no. 25, pp. 1605-1606, Dec. 2012
[43] Y.-S. Lin and J.-H. Lee, “Miniature butler matrix design using glass-based thin-film integrated passive device technology for 2.5-GHz applications,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 7, pp. 2594-2602, Jul. 2013.
[44] Y.-T. Chen, C.-L. Chang, and C.-H. Tseng, “A compact X-band CPW branch-line coupler using glass integrated passive device (GIPD) technology,” in Proc. Asia-Pacific Microw. Conf., 2013, pp. 276-278.
[45] M.-J. Chiang, H.-S. Wu, M.-L. Lee, and C.-K. C. Tzuang, “Design of compact Ka-band monolithic branch-line coupler on silicon substrate,” in Proc. Asia-Pacific Microw. Conf., 2009, pp. 2124-2127.
[46] S. Wang and C.-K. C. Tzuang, “Compacted Ka-band CMOS rat-race hybrid using synthesized transmission lines,” in IEEE MTT-S Int. Microw. Symp. Dig., 2007, pp. 1023-1026.
[47] M.-J. Chiang, H.-S. Wu, and C.-K. C. Tzuang, “Design of synthetic quasi-TEM transmission line for CMOS compact integrated circuit,” IEEE Trans. Microw. Theory Techn., vol. 55, no. 12, pp. 2512-2520, Dec. 2007.
[48] C.-H. Tseng, “Compact LTCC rat-race couplers using multilayered phase-delay and phase-advance T-equivalent sections,” IEEE Trans. Adv. Packag., vol. 33, no. 2, pp. 543-551, May 2010.
[49] V. Napijalo and B. Kearns, “Multilayer 180 coupled line hybrid coupler,” IEEE Trans. Microw. Theory Techn., vol. 56, no. 11, pp. 2525-2535, Nov. 2008.
[50] V. Napijalo, “Coupled line 180 hybrids with Lange couplers,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 12, pp. 3674-3682, Dec. 2012.
[51] I. Haroun, Y.-C. Hsu, and D.-C. Chang, “60 GHz rat-race coupler using LG- CPW transmission lines in IPD technology,” in Proc. Int. Top. Meeting Microw. Photon., Oct. 2011, pp. 284-287.
[52] C.-C. Chen, J.-J. Cin, S.-H. Wang, C.-C. Lin, and C.-K. C. Tzuang, “A novel miniaturized wideband Wilkinson power divider employing two-dimensional transmission line,” in Proc. Int. Topical Meeting on Microw. Photonics & Asia Pacific Microw. Photonics Conf., 2008, pp. 212-215.
[53] Y.-J. Li, M.-J. Xing, Z.-M. Zhu, and Y.-T. Yang, “Novel compact compass navigation system (CNS) power divider,” in Proc. Int. Conf. Electronic Packaging Technology & High Density Packaging, 2010, pp. 710-713.
[54] I. Haroun, T.-Y. Lin, D.-C. Chang, and C. Plett, “A reduced-size, low-loss 57-86 GHz IPD-based power divider using loaded modified CPW transmission lines,” in Proc. Asia-Pacific Microw. Conf., 2012, pp. 1202-1204.
[55] H.-T. Kim, K. Liu, R. C. Frye, Y.-T. Lee, G. Kim, and B. Ahn, “Design of compact power divider using integrated passive device (IPD) technology,” in Proc. Electronic Components and Technology Conf., 2009, pp. 1894-1899.
[56] B. Fu and X. Wei, “A compact Wilkinson power divider with LTCC technology,” in Proc. Int. Conf. Computational Problem-Solving, 2012, pp. 278-280.
[57] M. Ercoli, D. Dragomirescu, and R. Plana, “An extremely miniaturized ultra wide band 10-67 GHz power splitter in 65 nm CMOS technology,” in IEEE MTT-S Int. Microw. Symp. Dig., 2012, pp. 1-3.
[58] 周冠廷, 以雙模態左手合成傳輸線實現多款整合信號回溯/波束切換相位陣列天線, 國立台灣科技大學電機工程研究所, 碩士論文, 民國103.
[59] Datasheet of GaAs HJ FET NE34018 [Online]. Available: http://www.cel.com/discParts.do?command=search&idWebGroup=4&productLine=GAAS%20FET
[60] Datasheet of Coaxial Circulator 0130A18204001B [Online]. Available: http://www.woken.com.tw/product.php?t=Isolator_Circulator;Coaxial_Circulator;Woken;0130A18204001B

QR CODE