簡易檢索 / 詳目顯示

研究生: 黎燕婕
Thu Thi-Yen Le
論文名稱: 蒸發現象之探討-界劑水溶液液滴在石蠟膜上
The evaporation of solution drop of surfactants on Parafilm
指導教授: 林析右
Shi-Yow Lin
口試委員: 諶玉真
Yu-Jane Sheng
葉禮賢
Li-Hsien Yeh
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 65
中文關鍵詞: surfactantcontact angledrop evaporationsessile drop
外文關鍵詞: surfactant, contact angle, drop evaporation, sessile drop
相關次數: 點閱:196下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用固著液滴接觸角量測儀,在恆溫及恆濕 (飽和濕度)狀態下,於石蠟膜上滴置一含界劑之固著液滴 (SDS、TX100和 C12E6水溶液),繼而量測固著液滴因蒸發而引起之動態濕潤行為 (潤濕直徑 D、體積 V 和接觸角 CA)。當t = 0 ~70秒時,環境濕度 (Hr)趨近100%,t >70秒時,調降Hr至65±5%,使固著液滴緩慢蒸發、體積下降。藉由接觸角隨時間下降的曲線,測量其前進接觸角θa和後退接觸角θr。
    SDS水溶液固著液滴生成後,液滴潤濕石蠟膜,其潤濕直徑隨液滴之潤濕擴張而微幅增加 (在Hr~100%時),此時其液滴之接觸角呈一定值,此為前進接觸角。對於TX-100和C12E6水溶液,在固著液滴生成初期,其接觸角幾乎呈一定值 (設定為θa),隨後,其潤濕直徑因液滴持續擴張而緩慢上升至一定值,且維持一段時間不變;接觸角因潤濕直徑擴張、體積微幅上升 (在Hr ~ 100%時)而下降。當潤濕直徑於平穩期間時,其接觸角再次呈一定值並維持至環境濕度調降初期;此接觸角為另一個θa。之後,調整環境濕度至65±5%,液滴之潤濕直徑、體積和接觸角皆因液滴之蒸發而下降。實驗結果顯示:TX-100和C12E6水溶液液滴呈現兩個前進接觸角 (θa1和θa2)。
    界劑水溶液的濃度 (Cb)明顯影響了動態、前進和後退接觸角,此濃度效歸因於固-液界面和液-氣界面分別的界面張力之變化。對於較低的濃度溶液,θa和θr隨著Cb的增加而降低。SDS水溶液液滴在Cb<cmc時θa和θr隨濃度的增加而下降,當Cb = cmc時有明顯的轉折,Cb > cmc時θa則為一定值,此現象類似於SDS溶液的平衡表面張力。而TX-100、C12E6水溶液液滴的θa轉折處卻在Cb >> cmc。由於界劑分子的非平衡吸附,相對較慢的吸附速率在液-固和液-氣界面上,導致θa轉折處存在於不同的濃度位置


    The evaporation of solution drop of surfactants (SDS, Triton X-100 and C12E6) on parafilm was studied. The relaxations of wetting diameter, contact angle (CA), drop volume, and surface area of the sessile drops of surfactant were monitored using a sessile drop tensiometer during the drop evaporation (relative humidity Hr inside the environmental chamber is ~ 100% at the first 70 s, then Hr ~ 65% at t > 70s). The advancing and receding CA (θa and θr) were then determined from relaxation profile of CA.
    For SDS solution droop, the wetting diameter increased slightly right after the sessile drop was formed (at Hr ~ 100%), the CA then remained constant for a specific time period (concentration dependent), at which the θa was determined. For TX-100 and C12E6 solutions, a similar constant CA (set to be the θa) was observed right after the drop being formed. However, the triple line of the sessile drop advanced continuously and then reached a constant wetting diameter. This advance in triple line resulted in a decline in the CA, and another constant CA was observed during as the wetting diameter leveled off. Therefore, two advancing CA (θa1 and θa2) were identified for TX-100 and C12E6 solution drops.
    The dynamic, advancing and receding CAs were found to be strongly affected by the concentration (Cb) of the aqueous surfactant solutions. This dependence was attributed to the variations in both the interfacial tension at solid-liquid and liquid-gas interfaces. For diluted solutions, θa and θr were observed to decrease with increasing Cb. The θa of SDS became constant at Cb > cmc; i.e., the relaxation of θa and θr have a clear break at cmc which is similar to that of the equilibrium surface tension of SDS solution. However, the breakpoint of the θa of TX-100, C12E6 were observed at Cb >> cmc. This shift in the breakpoints of θa was attributed to the non-equilibrium adsorption of surfactant molecules at liquid-solid and liquid-gas interfaces that resulted from a relatively slower adsorption rate.

    摘要 i Abstract ii Acknowledgments iii Table of Contents iv List of figures v List of tables vii Chapter 1 – Introduction 1 1.1 Objectives 1 1.2 Motivation 1 1.3 Outline 2 Chapter 2 – Literature Review 3 2.1 Surfactant 3 2.2 Adsorption 8 2.3 Contact angle and wetting properties 10 2.4 Dynamic contact angle measurement 13 Chapter 3 – Experimental 16 3.1 Apparatus 16 3.2. Image acquisition and data processing 17 3.3 Contact angle calculated from the drop profile 18 3.4 Materials 20 3.5 Methodology 21 Chapter 4 – Evaporation of SDS solution on parafilm 23 4.1 Evaporative modes 23 4.2 Advancing CA for SDS solution drop on parafilm 24 4.3 Receding CA for SDS solution drop on parafilm 29 Chapter 5 – Evaporation of TX-100 and C12E6 solutions on parafilm 34 5.1 Advancing CA for TX-100 and C12E6 solutions drop on parafilm 34 5.2 Receding CA for TX-100 and C12E6 solutions drop on parafilm. 43 Chapter 6 – Conclusion and Future work 50 6.1 Conclusion 50 6.2 Future work 50 REFERENCES 51

    1. BE Chistyakov, Theory and practical application aspects of surfactants, in Surfactant: Chem. Interfacial Prop. Appl., DMVB Fainerman, R Miller. 2001. 511-648.
    2. T Stoebe, Z Lin, RM Hill, MD Ward, HT Davis, Surfactant enhanced spreading. Langmuir. 12 (1996) 337-344.
    3. P Thevenot, W Hu, L Tang, Surface chemistry influence implant biocompatibility. Current Topics in Medical Chem. 8 (2008) 270-280.
    4. SS Dukhin, R Miller, G Kretzschmar, On the Theory of adsorption kinetics of ionic surfactants at the fluid interfaces. Colloid Polym. Sci., 269 (1991) 923-928.
    5. D Bonn, J Eggers, J Indekeu, J Meunier, Wetting and spreading. Rev. Mod. Phys., 81 (2009) 739-805.
    6. PG Pittoni, CH Lin, TS Yu, SY Lin, On the Uniqueness of the Receding Contact Angle: Effects of Substrate Roughness and Humidity on Evaporation of Water Drops. Langmuir, 30 (2014) 9346-9654.
    7. MJ Rosen, Surfactants and Interfacial Phenomena. 1978, New York: John Wiley and Sons.
    8. D Myers, Surfaces, Interfaces and Colloids: Principles and Applications. 2nd ed. 1999, New York: John Wiley and Sons.
    9. K Holmberg, B Jonsson, B Kronberg, B Lindman, Surfactants and Polymers in Aqueous Solution. 2nd ed. 2002, Londons: John Wiley & Sons.
    10. S Dong, N Li, L Zheng, L Yu, T Inoue, Surface adsorption and micelle formation of surface active ionic liquids in aqueous medium. Langmuir, 23 (2007) 4178-4182.
    11. SF Burlatsky, VV Atrazhev, DV Dmitriev, VI Sultanov, EN Timokhina, EA Ugolkova, S Tulyani, A Vincitore, Surface tension model for surfactant solutions at the critical micelle concentration. J. Colloid Interface Sci., 393 (2013) 151-160.
    12. MRR Nino, JMR Patino, Surface tension of bovine serum albumin and Tween 20 at the air-aqueous interface. J. Am. Oil Chem. Soc, 75 (1998) 1241.
    13. SY Lin, K Mckeigue, C Maldarelli, Diffusion-Controlled Surfactant Adsorption Studied by Pendant Drop Digitization. AIChE, 36(1990) 1785-1795
    14. T Yoshimura, S Umezawa, A Fujino, K Torigoe, K Sakai, H Sakai, M Abe, K Esumi, Equilibrium surface tension, dynamic surface tension and micellization properties of lactobionamide-type- sugar-based Gemini surfactants. J. Oleo Sci., 62 (2013) 353-362.
    15. A Goswami, G Verma, PA Hassan, SS Bhagwat, Equilibrium and Dynamic Surface Tension Behavior of Triblock Copolymer PEO-PPO-PEO in Aqueous Medium. J. Dispers. Sci. Technol., 36 (2015) 885-891.
    16. LP Jackson, R Andrade, I Pleasent, BP Grady, Effects of pH and Surfactant Precipitation on Surface Tension and CMC Determination of Aqueous Sodium n-Alkyl Carboxylate Solutions. J. Surfactants Deterg., 17 (2014) 911-917.
    17. N Rehman, H Ullah, S Alam, AK Jan, SW Khan, M Tariq, Surface and thermodynamic study of micellization of nonionic surfactant/diblock copolymer system as revealed by surface tension and conductivity. J. Mater. Environ. Sci., 8 (2017) 1161-1167.
    18. T Chakraborty, I Chakraborty, S Shosh, The methods of determination of critical micellar concentrations of the amphiphilic systems in aqueous medium. Arad. J. Chem., 4 (2014) 265-270.
    19. SY Lin, YY Lin, EM Chen, CT Hsu, CC Kwan, A study of the Equilibrium Surface Tension and the Critical Micelle Concentration of Mixed Surfactant Solution. Langmuir, 15 (1999) 4370-4376.
    20. A Dominguez, A Fernandez, N Gonzalez, E Iglesias, L Montenegro, Determination of Critical Micelle Concentration of Some Surfactants by Three Techniques. J. Chem. Educ., 74 (1997) 1227.
    21. M Perez-Rodriguez, G Prieto, G Rega, LM Varela, F Sarmiento, V Mosquera, A Comparative Study of the Determination of the Critical Micelle Concentration by Conductivity and Dielectric Constant Measurements. Langmuir, 14 (1998) 4422-4426.
    22. RJ Williams, JN Philips, KJ Mysels, The critical micelle concentration of sodium lauryl sulfate at 25 0C. Trans. Faraday Soc., 51 (1955) 728-737.
    23. VD Dolzhikova, OA Soboleva, BD Summ, Contact angles as indicators of micellization. Colloid J., 59 (1997) 283-286.
    24. C Zhang, X Zhao, J Lei, Y Ma, F Du, The wetting behavior of aqueous surfactant solutions on wheat (Triticum eastivum) leaf surfaces. Soft Matter, 13 (2017) 503-513.
    25. J Zhang, RM Manglik, Additive Adsorption and Interfacial Characteristics of Nucleate Pool Boiling in Aqueous Surfactant Solutions. J. Heat Transf., 127 (2005) 684.
    26. C Huang, Q Li, M Li, J Niu, Y Song, Synthesis and Properties of Guerbet Hexadecyl Sulfate. Tenside Surfactants Deterg., 51 (2014) 506-510.
    27. X Zhang, JK Jackson, HM Burt, Determination of surfactant critical micelle concentration by a novel fluorescence depolarization technique. J. Biochem. Biophys. Methods, 31 (1996) 145-150.
    28. D Yu, F Huang, H Xu, Determination of critical concentration by synchronous fluorescence spectroscopy. Anal. Methods, 4(2014) 47-49.
    29. O Topel, BA Cakir, L Budama, N Hoda, Determination of critical micelle concentration of polybutadiene-block-poly(ethyleneoxide) diblock copolymer by fluorescence spectroscopy and dynamic light scattering. J. Mol. Liq., 177 (2013) 40-43.
    30. P Mukerjee, KJ Mysels, Critical Micelle Concentration of Aqueous Surfactant Systems. 1971, Washington DC: NBS.
    31. A Khan, S Shah, Determination of Critical Micelle Concentration (cmc) of Sodium Dodecyl Sulfate (SDS) and the Effect of Low Concentration of Pyrene on its Cmc Using ORIGIN Software. J. Chem. Soc. Pak., 30 (2008) 186-191.
    32. H Schott, Solubilization of a Water-Insoluble Dye as a Method for Determining Micellar Molecular Weights. J. Phys. Colloid Chem., 70 (1966) 2966-2973.
    33. AA Patil, TJ Patil, Measurement of critical micelle concentration of technical grade non-ionic detergent in presence of Chloramine-T using dye solubilization technique. Orient. J. Chem., 27 (2011) 753-756.
    34. AT Bagha, K Holmberg, Solubilization of Hydrophobic Dyes in Surfactant Solutions. Materials (Basel), 6 (2013) 580-608.
    35. S Reis, CG Moutinho, C Matos, B de Castro, P Gameiro, JLFC Lima, Noninvasive methods to determine the critical micelle concentration of some bile acid salts. Anal. Biochem., 334 (2004) 117-126.
    36. K Ogino, T Kubota, H Uchiyama, M Abe, Micelle Formation and Micellar Size by a Light Scattering Technique. J. Jpn. Oil Chem. Soc., 37 (1988) 588-591.
    37. SL Dong, GY Xu, Study on interaction between sodium dodecyl sulfate and polyvinylpyrrolidone by dynamic light scattering and electron spin resonance. Acta Chim. Sin., 62 (2004) 674-679.
    38. WC Preston, Some correlating principles of detergent action. J. Phys. Colloid Chem., 52 (1948) 84-97.
    39. JM Schuster, CE Schvezov, MR Rosenberger, Influence of Experimental Variables on the Measure of Contact Angle in Metals Using the Sessile Drop Method. Procedia Materials Sci., 8 (2015) 742-751.
    40. Y Yuan, TR Lee, Surface Science Techniques. Springer Series in Surface Sciences, ed. H.L. G. Ertl, D. L. Mills. Vol. 51. 2013, New York: Springer.
    41. JC Berg, Wettability. Vol. 49. 1993: Taylor & Francis.
    42. E Bormashenko, Yu, Wetting of Real Surfaces. De Gruyter Studies in Mathematical Physics. 2013.
    43. PG Pittoni, CC Chang, TS Yu, SY Lin, Evaporation of water drops on polymer surfaces: Pinning, depinning, and dynamics of the triple line. Colloids. Surf. A: Physicochem. Eng. Asp., 432 (2013) 89-98.
    44. JB Dupont, D Legendre, Numerical simulation of static and sliding drop with contact angle hysteresis. J. Comput Phys., 229 (2010) 2453-2478.
    45. TS Lin, YH Zeng, RY Tsay, SY Lin, Deflation rate dependence of receding contact angle on polymeric surfaces. J. Taiwan Ins. Chem. Eng., 61 (2016) 26-31.
    46. TT Chau, WJ Burkard, PTL Koh, AV Nguyen, A review of factors that affect contact angle and implications for flotation practice. Adv. Colloid Interface Sci., 150 (2009) 106-115.
    47. TS Lin, YH Zeng, RY Tsay, SY Lin, Roughness-induced strong pinning for drops evaporating from polymeric surfaces. J. Taiwan Ins. Chem. Eng., 62 (2016) 54-59.
    48. R Crawford, LK Koopal, J Ralston, Contact angles on particles and plates. J. Colloids Surfaces, 27 (1987) 57-64.
    49. J Drelich, JD Miller, RJ Good, Effect of drop (bubble) size on advancing and receding contact angles for heterogeneous and rough solid surfaces as observed with sessile-Drop and Captive-Bubble Techniques. J. Colloid Interface Sci., 179 (1996) 37-50.
    50. AS Dimitrov, PA Kralchevsky, AD Nikolov, H Noshi, M Matsumoto, Contact angle measurements with sessile drops and bubbles. J. Colloid Interface Sci., 145 (1991) 279-282.
    51. SY Lin, HC Chang, LW Lin, PY Huang, Measurement of dynamic/advancing/receding contact angle by video-enhanced sessile drop tensiometry. Rev. Sci. Instrum., 67 (1996) 2852-2858.
    52. AF Stalder, T Melchior, M Muller, D Sage, T Blu, M Unser, Low-bond axisymmetric drop shape analysis for surface tension and contact angle measurements of sessile drops. Colloid Surfaces A: Physicochem. Eng. Aspects 364 (2010) 72-81.
    53. Y Rotenberg, L Boruvka, A Neumann, Determination of Surface Tension and Contact Angle from the shapes of axisymmetric fluids interfaces. J. Colloid Interface Sci., 93 (1983) 169-183.
    54. C Hub, R Reed, A Method for estimating interfacial tensions and contact angles from sessile and pendant drop shapes. J. Colloid Interface Sci., 91 (1983) 472-484.
    55. CO Timmons, WA Zisman, The effect of liquid structure on contact angle hysteresis. J. Colloid Interface Sci., 22 (1966) 165-171.
    56. AW Neumann, RJ Good, Techniques of Measuring Contact Angles, in Surface and Colloid Science: Volume 11: Experimental Methods, RJ Good and RR Stromberg. 1979, Springer US: Boston, MA. 31-91.
    57. E Bormashenko, Y Bormashenko, G Whyman, R Pogreb, A Musin, R Jager, Z Barkay, Contact Angle Hysteresis on Polymer Substrates Established with Various Experimental Techniques, Its Interpretation, and Quantitative Characterization. Langmuir, 24 (2008) 4020-4025.
    58. D Quere, Drops at Rest on a Tilted Plane. Langmuir, 14 (1998) 2213-2216.
    59. E Pierce, FJ Carmona, A Amirfazli, Understanding of sliding and contact angle results in tilted plate experiments. Colloid Surfaces A: Physicochem. Eng. Aspects, 323 (2008) 73-82.
    60. D Li, P Cheng, AW Neumann, Contact angle measurement by axisymmetric Drop Shape Analysis (ADSA). Adv. Colloid Interface Sci., 39 (1992) 347-382.
    61. JF Olive, C Huh, SG Mason, An Experimental study of some effect of solid surface roughness on wetting. Colloid Surfaces 1 (1980) 79-104.
    62. CNC Lam, R Wu, D Li, ML Hair, AW Neumann, Study of the advancing and receding contact angles: liquid sorption as a cause of contact angle hysteresis. Adv. Colloid Interface Sci., 96 (2002) 169-191.
    63. MER Shanahan, C Bourges, Effects of evaporation on contact angles on polymer surfaces. Int. J. Adhes. Adhes., 14 (1994) 201-205.
    64. C Bourges-Monnier, MER Shanahan, Influence of evaporation on contact angle. Langmuir, 11 (1995) 2820-2829.
    65. HY Erbil, G McHale, SM Rowan, MI Newton, Determination of the receding contact angle of sessile drops on polymer surfaces by evaporation. Langmuir, 15 (1995) 7378-7385.
    66. L Wilhelmy, Ueber die Abhangigkeit der Capillaritats-Constanten des Alkohols von Substanz und Gestalt des benetzten festen Korpers. Ann. Physik, 119 (1863) 177-217.
    67. E Rame, The Interpretation of dynamic contact angles measured by Wilhelmy plate method. J. Colloid Interface Sci., 185 (1997) 245-251.
    68. ON Tretinnikov, Y Ikada, Dynamic wetting and contact angle hysteresis of polymer surfaces studied with the modified Wilhelmy balance method. Langmuir, 10 (1994) 1606-1614.
    69. Y Uyama, H Inoue, K Ito, A Kishida, Y Ikada, Comparison of Different Methods for Contact Angle Measurement J. Colloid Interface Sci., 141 (1994) 275-279.
    70. B Krasovitski, A Marmur, Drops Down the Hill: Theoretical Study of Limiting Contact Angles and the Hysteresis Range on a Tilted Plate. Langmuir, 21 (2005) 3881-3885.
    71. JF Padday, The Profiles of Axially Symmetric Menisci. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 269 (1971) 265-293.
    72. SY Lin, YC Lin, MJ Shao, Adsorption kinetics of C12E6 at the air-water interface. J. Chin. Inst. Chem. Engrs., 33 (2002) 631-643.
    73. 廖育青, 十二烷基硫酸鈉界面活性劑水溶液添加鹽類之吸附動力學探討, in 化學工程系. 2012, 國立臺灣科技大學.
    74. A Casandra, MC Chang, BA Noskov, SY Lin, Adsorption kinetics of sodium dodecyl sulfate on perturbed air-water interfaces. Colloids and Surfaces A: Physicochem. Eng. Aspects, 518 (2017) 241-248.
    75. J Drelich, R Zhan, JD Miller, JK Borchardt, Contact Angle, Wettability and adhesion. Vol. 2. 2002: CRC Press.
    76. S Zhu, WG Miller, LE Scriven, HT Davis, Superspreading of water-silicone surfactant on hydrophobic surfaces. Colloid Surfaces A: Physicochem. Eng. Aspects, 90 (1994) 63-78.
    77. T Svitova, H Hoffmann, RM Hill, Trisiloxane Surfactants: Surface/Interfacial tension dynamics and Spreading on Hydrophobic Surfaces. Langmuir, 12 (1996) 1712-1721.
    78. TS Lin, YC Lin, RY Tsay, SY Lin, Impact of surface dilation rate on dynamic surface tension. Exp. Therm. Flu. Sci, 80 (2017) 61-66.
    79. YC. Lee, KJ Stebe, HS Liu, SY Lin, Adsorption and desorption kinetics of CmE8 on impulsively expanded or compressed air-water interfaces. Colloid Surfaces A: Physicochem. Eng. Aspects, 220 (2003) 139-150.
    80. CT Hsu, MJ Shao, YC Lee, SY Lin, Adsorption and desorption kinetics of C12E4 on perturbed interfaces. Langmuir, 16 (2000) 4846-4852.
    81. FM Chang, YJ Sheng, H Chen, HK Tsao, From superhydrophobic to superhydrophilic surfaces tuned by surfactant solutions. Appl. Phys. Lett, 91 (2007) 094108.

    QR CODE