簡易檢索 / 詳目顯示

研究生: 蔡東嶧
Tung-Yi Tsai
論文名稱: 垂直式爐管內氣體噴注器的噴霧均勻優化之數值模擬分析
Numerical Analysis for Improving the Spray Uniformity of Gas Supply Injector inside the Vertical Furnace
指導教授: 林顯群
Sheam-Chyun Lin
口試委員: 陳呈芳
Cheng-Fung Chen
李基禎
Ji-Je Lee
郭振華
Jen-Hua Guo
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 145
中文關鍵詞: 垂直式爐管氣體噴注器流場均勻化模擬分析VOF
外文關鍵詞: Vertical furnace, Gas supply injector, Spray uniformity, VOF
相關次數: 點閱:389下載:24
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

爐管為半導體產業常使用的製程設備,其良率為重要之技術指標,因此本研究針對垂直式爐管進行流場數值模擬,評估氣體噴注器的流量對於製程良率所產生的影響,藉由晶圓薄膜厚度之實測比對,找出氣體噴注器的出口流量與氣體在晶圓層分佈的相關性。在原始的爐管製程產品量測結果的缺失在於,晶圓的薄膜層厚度不均造成良率下降,因此本研究針對爐管之流場進行模擬分析,以找出其流場的缺失並進行改善。在此所探討之CVD製程中,利用兩根氣體噴注器分別通入矽甲烷(Silane, SiH4)與磷化氫(Phosphine, PH3)的氣體進入爐管以供進行需求之化學反應;在完成原始爐管之模擬後,利用後處理觀察每根噴注器的出口流量與爐管各區域的流場分佈;除此之外,在滿足流量非均勻性15%以內下,找出在氣體噴注器上所能適用的流量範圍,並得到了兩條經驗公式,可用來設計出符合良率要求之爐管模型。而為在晶圓層做進一步的觀察,本研究也利用多相流的數值計算模組VOF(Volume of Fluid),來計算監控每片晶圓層間的氣體體積,觀察整批晶圓上的氣體分佈。在改變了氣體噴注器的孔洞直徑後,可發現利用參數化的調整,針對兩種不同製程氣體的噴注器,成功地讓每根噴注器的出口流量平均分配;再經由成品實測的結果比對驗證,晶圓上的薄膜層均勻度可有效的提升,所以氣體噴注器的孔洞直徑調整為重要參素。另外也發現入口氣體噴注器的出口流量,對於晶圓層間之氣體體積分佈有相對應的關係,雖然本模擬中並未考慮化學反應,僅在氣體特性與幾何參數作詳細探討,仍對於晶圓上薄膜均勻化的改良有相當的成效。


Furnace is an extensively used device for processing the wafer in semiconductor fabrication, in which the yield rate is the crucial indicator for technical advancement in wafer foundries. It is well known that flow patterns inside the furnace significantly influence the quality of wafer product. Therefore, this study intends to establish the capability for simulating flow fields and distributions of reacting gases inside a vertical diffusion furnace. In the process considered here, two gas supply injectors are implemented to transport silane (SiH4) and phosphine (PH3) to wafer surface for the CVD (chemical vapor deposition) process. Firstly, flow visualization via CFD simulation on the original furnace is carried out carefully to identify the adverse flow patterns inside the furnace and to check the spray uniformity of each gas injector. It is found that the spray non-uniformities of two gas injectors with 4 spray holes are not evenly distributed. For a low-flowrate PH3 (90 sccm), near 45% of PH3 enters the furnace via the 3rd injector hole; thus there is no sufficient PH3 left for the upper portion of furnace, where corresponds to the wafer layers 1 to 60. On the other hand, most of the high-flowrate SiH4 (800 sccm) is injected into the upper part of furnace. Moreover, the VOF (volume of fluid) multiphase model is used to evaluate the volume distributions (concentrations) of all reacting gases in each wafer layer, which is strongly correlated with the measurement on coating thickness over the entire 172 wafers.
Thereafter, a series of diameter modifications on injector holes is executed within the framework of CFD technology for diminishing the non-uniformities from 55.19% and 34.73% to 5.37% and 9.93% for PH3 and SiH4 supply pipes, respectively. Furthermore, this design procedure is performed systematically for various gas flowrates to meet with the practical need. Also, these optimized results are used to generate design formula for constructing an appropriate gas supply injector with the non-uniformity under 15% for the flowrates ranging from 50~7,600 sccm and 50~13,700 sccm for PH3 and SiH4 supply injectors, respectively. As long as the desired flowrate is determined; then all exit diameters in the gas supply injector can be calculated easily via these polynomial formulas. Additionally, VOF calculations on the diffusion furnaces equipped with the revised gas injectors are attained numerically to illustrate the effective improvements on the non-uniformities of these optimized injectors. Thus, it is concluded that appropriate arrangement on opening diameters in the gas supply injector is an effective approach to enhance flow uniformity and yield rate of wafer fabrication. In summary, this research successfully establishes a numerical model and a reliable ready-to-use formula for designing the gas supply injector oven an extensive range of flowrate for PH3 and SiH4. Certainly, this systematic analysis scheme can be employed to improve the wafer production in other furnaces with different reacting gases used in semiconductor process.

致謝 I 摘要 II 目錄 V 圖索引 VIII 表索引 XI 符號索引 XII 第一章 緒論 1 1.1前言 1 1.2文獻回顧 2 1.2.1晶圓製程技術 2 1.2.2薄膜均勻性研究 4 1.2.3製程爐管之設計參數 5 1.2.4數值分析方法 6 1.3研究動機與目的 8 1.4研究流程 8 第二章 加熱製程與爐管簡介 12 2.1氧化製程 12 2.2擴散製程 16 2.3高溫化學氣相沉積 20 2.4加熱製程的硬體設備 22 第三章 爐管之物理和數值模型 26 3.1模型介紹 26 3.2數值模型建立 31 3.3網格規畫 38 3.4邊界條件設定 43 第四章 數值方法 45 4.1統御方程式 45 4.2數值計算方法 49 4.2.1離散化方程式 49 4.2.2壓力與速度耦合的處理 52 4.3 VOF方程式 53 4.3.1體積分率方程式 54 4.3.2介面重建 54 4.3.3方程式之離散 55 4.4數值求解流程 57 第五章 原始爐管模型之模擬分析 60 5.1原始爐管之流場分析 60 5.1.1整體爐管之流場分析 60 5.1.2氣體噴注器之流場分析 63 5.2氣體噴注器之出口流量與非均勻度分析 71 5.3原始爐管的晶圓層之氣體濃度分析 73 5.3.1多相流簡介 73 5.3.2爐管氣體體積計算方法 78 5.3.3原始模型的氣體分佈 81 5.4分析問題與提出改善方案 83 第六章 改良模型之模擬分析 89 6.1氣體噴注器的孔洞直徑調整 89 6.2參數化改良與分析 91 6.2.1 PH3氣體噴注器 91 6.2.2 SiH4氣體噴注器 102 6.2.3 PH3與SiH4氣體噴注器的數據比較 106 6.3改良模型的晶圓層之氣體濃度分析 110 第七章 結論與建議 123 7.1結論 123 7.1.1氣體噴注器流量的均勻性分析 123 7.1.2爐管內的氣體體積分佈 124 7.2建議 125 參考文獻 127

[1] Donald A. Neamen, “Semiconductor Physics and Devices: Basic Principles,” 4 Edition, McGraw-Hill, 2013.
[2] 施敏,梅凱瑞,“半導體製程概論”,交大出版社,2016年。
[3] J. L. Ebert, D. de Roover, L. L. Porter II, V. A. Lisiewicz, S. Ghosal, R. L. Kosut, and A. Emami-Naeini, “Model-Based Control of Rapid Thermal Processing for Semiconductor Wafers,” Proceeding of the 2004 American Control Conference, pp. 3910-3921.
[4] Anjuli T. Appapillaia and Emanuel M. Sachs, “A Method for Temperature Profile Measurement of Silicon Wafers in High-Temperature Environments,” American Institute of Physics, AIP, Vol. 109, No. 3, pp.1-8, 2011, doi: 10.1063/1.3544347.
[5] Byongju Kim, Hyunchul Jang, Sun-Wook Kim, Dae-Seop Byeon, Sangmo Koo, Jason S. Song, and Dae-Hong Ko, “Growth and Electrical Properties of In Situ Phosphorus-Doped Polycrystalline Silicon Films Using Si3H8 and PH3,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, Vol. 32, pp.1-7, 2014, doi: 10.1116/1.4870817.
[6] Zhigang Huang, Junhong Zhang, and Ming Li, “A Wet Process to Form Silicon Oxide Thin Layer for Through Silicon via Application,”
16th International Conference on Electronic Packaging Technology, pp. 132-135, 2015.
[7] Takashi Fukada, Woo Sdc Yoo,Yasuhide Hiraga, Kitaek Kang, and Ryuichi Komatsubara, “Wet Oxidation using Single Wafer Furnace,” 9th Int. Conference on Advanced Thermal Processing of Semiconductors-RTP' , pp. 38-42, 2001.
[8] Shirley Ekbundit and Brian Izzio, “Characterization of Film Uniformity in LPCVD TEOS Vertical Furnace,” IEE/SEMI Advanced Semiconductor Manufacturing Conference, Boston, MA, USA, 30 April-2 May 2002.
[9] Dan Alvarez and Jeffrey Spiegelman, “Improved Uniformity for Thin Oxides When Using Wet Thermal Oxidation,” Photovoltaic Specialists Conference (PVSC), 38th IEEE, Austin, TX, USA, 2012.
[10] Casey Barker, Al Badowski, Bruce Whitefield, Keith L. Levien, and Milo D. Korestky, “Factors Affecting Thickness Variation of SiO2 Thin Films Grown by Wet Oxidation,” IEEE Transactions on Semiconductor Manufacturing, Vol. 24, No. 2, pp. 348-357, May 2011.
[11] Michal Zawierta, Mariusz Martyniuk, Roger D. Jeffery, Gino Putrino, Adrian Keating, K. K. M. B. Dilusha Silva, Member, and Lorenzo Faraone, “A High Deposition Rate Amorphous-Silicon Process for Use as a Thick Sacrificial Layer in Surface-Micromachining,” Journal of Microelectromechanical Systems, Vol. 26, Issue. 2, April 2017.
[12] Hiroyuki Imazono, Takashi Terashige, and Kazuo Okano, “The Double Jet Ionizer for ULSI Manufacturing Processes,” IEEE Transactions on Semiconductor Manufacturing, Vol. 15, No. 2, pp. 189-193, May 2002.
[13] 馬梓晏,“快速熱處理爐內流場、溫度場及應力場之穩態解”,國立台灣科技大學機械工程系碩士論文,2003年。
[14] Masaomi Yamaguchi, Tsunehisa Sakoda, Hiroshi Minakata, Shiqin Xiao, Yusuke Morisaki, Kazuto Ikeda, and Yasuyoshi Mishima, “Formation of HfSiON/SiO2/Si -Substrate Gate Stack with Low Leakage Current for High-Performance High-κ MISFETs,” IEEE Transactions on Electron Devices, Vol. 53, No. 4, pp. 923-925, April 2006.
[15] Hoomi Choi, Hojoong Kim, Deokjoo Yoon, Jong W. Lee, Bong-Kyun Kang, Min-Su Kim, Jin-Goo Park, Soon-Bark Kwon, and Taesung Kim, “Development of CO2 Gas Cluster Cleaning Method and Its Characterization,” Microelectronic Engineering, Vol. 102, pp. 87-90, 2013.
[16] Guihua Hu, Wenhua Zhu, Tao Yu, and Yupeng Su, “Numerical Simulation and Visualization of Engineering Analysis of Thermal and Flow Fields of Consecutive Diffusing Furnace”, 6th IEEE International Conference on Industrial Informatics, Daejeon, South Korea, 13-16 July 2008.
[17] Giteshkumar N Patel, “CFD Simulation of Two-Phase and Three-Phase Flows in Internal-Loop Airlift Reactors,” Lappeenranta University of Technology, Department of Mathematics and Physics, Master Thesis, 2010.
[18] 李淙賢,“直立式爐管之晶圓裝載區域的流場模擬分析”,國立台灣科技大學機械工程系碩士論文,2011年。
[19] 邱義萱,“垂直式爐管之流場均勻化改良的數值模擬分析”,國立台灣科技大學機械工程系碩士論文,2016年。
[20] 義守大學線上學習資源,http://www.isu.edu.tw/upload/81201/43/news/postfile_11051.pdf
[21] 蕭宏,“半導體製程技術導論”,全華出版社,2014年。
[22] 張勁燕,“半導體製程設備”,五南出版社,2009年。
[23] 楊子敏,“半導體製程設備技術”,五南出版社,2011年。
[24] 寧遠科技有限公司,http://www.tgctech.com.tw/。
[25] 住程科技系統SPTS,http://www.spts.com。
[26] B. E. Launder and D. B. Spalding, “Lectures in Mathematical Models of Turbulence,” Academic Press,1972.
[27] S. V. Patankar and D. B. Spalding, “A Calculation Procedure for Heat Mass and Momentum Transfer in Three-Dimensional Parabolic Flows,” International Journal of Heat Mass Transfer, Vol. 15, pp. 1787-1806, 1972.
[28] Sang Jeen Hong, Jong Ha Hwang, and Dong-Sun Seo, “Statistical Qualitative Analysis on Chemical Mechanical Polishing Process and Equipment Characterization,” Transactions on Electrical and Electronic Materials, Vol. 12, No. 2, pp. 56-59, April 25, 2011.
[29] 虎門科技股份有限公司,http://www.cadmen.com。
[30] M. Ishii, “Thermo-Fluid Dynamic of Two-Phase Flow”, Eyrolles, Paris, 1975.
[31] 林仕文,“基於流體體積法之兩相流(包含熱質傳)數值方法及其應用”,國立交通大學機械工程系博士論文,2013年。

QR CODE