簡易檢索 / 詳目顯示

研究生: 蔡明宏
Ming-Hung Tsai
論文名稱: 三軸壓縮試驗下加勁土壤力學行為與加勁材應變發展之研究
A Study of the Behavior of Reinforced Soils and the Mobilization of Reinforcement Strains using Triaxial Compression Tests
指導教授: 楊國鑫
Kuo-Hsin Yang
口試委員: 吳朝賢
Cho-Sen Wu
林宏達
Hong-Da Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 144
中文關鍵詞: 三軸試驗層狀加勁土壤尖峰剪力強度加勁材應變發展
外文關鍵詞: Triaxail Tests, Laminated Reinforced Soil, Peak Shear Strength, Reinforcement Strains
相關次數: 點閱:215下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 加勁擋土結構物為在回填土內置入加勁材,利用加勁材所發展的張力提升土壤的剪力強度及整體的穩定性。本文採用三軸壓縮試驗模擬加勁土壤在加勁擋土結構物中的受力情形,探討加勁土壤的力學行為、破壞機制與加勁材的應變發展。本研究試驗變因包括試驗圍壓、加勁材層數與加勁材於試體中之放置位置。研究結果顯示,加勁材層數可提升加勁土壤的尖峰剪力強度,增加到達尖峰剪力強度的軸向應變量,減少後峰剪力強度的遞減。在體積應變方面,加勁材會造成試體早期體積壓縮量的增加,然而隨著軸向應變的發展,加勁土壤相較於未加勁土壤產生較大的體積剪脹量。本研究更進一步透過加勁材受力後的殘餘應變量,推求加勁材在試驗中實際受力的情形,以探討加勁土壤受力後加勁材張力應變的發展。研究結果顯示,加勁材應變發展隨著試體圍壓與加勁材層數的增加而提升,每層加勁材應變量的發展以圓心為最大並沿著半徑方向逐漸遞減。


    Laboratory triaxial compression tests are carried out in order to determine the behavior of reinforced soils and the mobilization of reinforcement strains. The mechanical behavior of the composite material is investigated through varying the confining pressure, number of geotextile layer, and geotextile arrangement. As observed from a series of triaxial compression test results, the geotextile inclusion enhances the peak shear strength, axial strain at failure and reduces post-peak loss of strength. In addition, compared to unreinforced soils, the geotextile inclusion increases the compressive volumetric strain during initial shear and the dilatancy for further shearing. Further, a special technique is introduced to measure the residual tensile strains of reinforcement and estimate the mobilization of reinforcement tensile strains during tests. The results show the mobilized reinforcement tensile strains increase with the increase of reinforcement layers and confining pressures. For each reinforcement layer, the mobilized reinforcement tensile strain has peak value at center and decreases along radial direction.

    摘 要 I Abstract II 謝 誌 III 目 錄 IV 表目錄 XII 第一章 緒論 1 1.1 加勁擋土結構 1 1.1.1 地工合成材的類型 2 1.1.2 加勁擋土結構的應用範圍與型式 3 1.1.3 加勁擋土結構之經濟效益 4 1.1.4 加勁擋土結構之破壞模式 5 1.2 研究動機 7 1.3 研究目的與方法 7 1.4 論文架構 8 第二章 文獻回顧 10 2.1 前言 10 2.2 加勁土壤結構的設計 11 2.2.1 側向土壓理論 11 2.2.2 極限平衡理論 14 2.2.3 連體力學理論 16 2.3 三軸試驗於水平加勁試體之應用 17 2.3.1 Vidal (1969) and Schlosser and Vidal (1980) 17 2.3.2 Haeri et al (2000) 17 2.3.3 Chandrasekaran et al (1989) 20 2.3.4 Latha and Murthy (2006) 22 2.3.5 Zhang et al (2005) 24 2.3.6 蔡依雯(2007) 25 2.4 加勁土壤之分析 26 2.4.1 Wu and Hong (2008) 26 2.4.2 Yang (2009) 27 第三章 土壤與加勁材基本參數試驗 29 3.1 試驗規劃 29 3.2 試驗材料之基本性質 30 3.2.1 土壤基本性質 30 3.2.2 相對密度試驗 31 3.2.3 直接剪力試驗 32 3.2.4 單向寬幅張力拉伸試驗 35 3.2.5 雙向等速拉伸試驗 39 3.3 土壤-加勁材介面試驗 43 第四章 加勁材土壤三軸試驗 47 4.1 三軸壓縮試驗 47 4.1.1 試驗量測儀器介紹 47 4.1.2 試驗量測儀器校正 50 4.1.3 資料擷取設備 52 4.1.4 周邊設備介紹 54 4.1.5 試體準備與製作 58 4.1.6 三軸壓縮試驗流程 62 4.2 三軸試驗結果 63 4.2.1 未加勁土壤 63 4.2.2 單層加勁土壤 66 4.2.3 雙層加勁土壤 68 4.2.4 三層加勁土壤 70 4.3 加勁層數之影響 72 4.3.1 圍壓為20kPa 72 4.3.2 圍壓為50kPa 74 4.3.3 圍壓為100kPa 76 4.3.4 圍壓為200kPa 78 4.4 應力增量效果 82 4.4.1 應力增量比 82 4.4.2 應力增量差值 85 4.4 視凝聚力觀點驗證 86 4.5 加勁材放置位置之影響 87 4.5.1 加勁材放置於試體上緣H/4 88 4.5.2 加勁材放置於試體下緣H/4 91 4.5.3 加勁材放置位置影響之小結 94 第五章 加勁材應變發展 95 5.1 影像擷取設備與量測方法 95 5.1.1 影像擷取設備 95 5.1.2 擷取影像之量測方法 97 5.2 張力應變與殘餘應變之關係 101 5.3 單層加勁材之殘餘應變 102 5.3.1 圍壓為20kPa 102 5.3.2 圍壓為50kPa 104 5.3.3 圍壓為100kPa 105 5.3.4 圍壓為200kPa 107 5.3.5 單層加勁材殘餘應變之小結 108 5.4 雙層加勁材之殘餘應變 109 5.4.1 圍壓為20kPa 110 5.4.2 圍壓為50kPa 112 5.4.3 圍壓為100kPa 114 5.4.4 圍壓為200kPa 116 5.4.5 雙層加勁材殘餘應變之小結 118 5.5 三層加勁材之殘餘應變 120 5.5.1 圍壓為20kPa 120 5.5.2 圍壓為50kPa 123 5.5.3 圍壓為100kPa 125 5.5.4 圍壓為200kPa 128 5.5.5 三層加勁材殘餘應變之小結 130 5.6 加勁層數與圍壓對加勁材殘餘應變的影響 133 5.7 加勁材殘餘應變量測之結論 134 第六章 結論與建議 137 6.1 結論 137 6.2 建議 138 參考文獻 139 附 錄 143 自 述 145

    Allen, T.M., Bathurst, R. J., Holtz, R. D., Walters, D., and Lee, W. F., (2003). “A new working stress method for prediction of reinforcement loads in geosynthetic walls,” Can. Geotech. J.40: pp 976-994.

    Allen, T.M., Bathurst, R. J., Holtz, R. D., Walters, D., and Lee, W. F., (2004). “A New Method for Prediction of Loads in Steel Reinforced Soil Walls”, Journal of Geotechnical and Geoenvironmental Engineering, v 130, n 11, pp 1109-1120.

    ASTM D452, (2008). “Standard Test Method for Sieve Analysis of Surfacing for Asphalt Roofing Products,” Designation: D452-91.

    ASTM D2216, “Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass,” Designation: D2216-98.

    ASTM D3080 “Standard Test Method for Direct Shear Test of Soils Under Consolidated Drained Conditions,” Designation: D3080-04.

    ASTM D4253, (2006). “Standard Test Methods for Maximum Index Density and Unit Weight of Soils Using a Vibratory Table,” Designation: D4253.

    ASTM D4254, (2006). “Standard Test Methods for Minimum Index Density and Unit Weight of Soils and Calculation of Relative Density,” Designation: D4254.

    ASTM D4595, (2001). “Standard Test Method for Tensile Properties of Geotextiles by the Wide-Width Strip Method,” Designation: D4595-86.

    Bathurst, R.J., Miyata, Y., Nernheim, A. and Allen, T.M., (2008). “Refinement of K-Stiffness Method for Geosynthetic Reinforced Soil Walls”, Geosynthetics International, v 15, n 4, pp 269–295

    Bathurst, R. J., Allen, T. M., and Walters, D. L., (2005). “Reinforcement Loads in Geosynthetic Walls and the Case for a New Working Stress Design Method”, Geotextiles and Geomembranes, 23, No. 4, pp 287–322.

    Chandrasekaran B., Broms, B., and Wong, K., (1989), “Strength of Fabric Reinforced Sand under Axisymmetric Loading”, Geotextiles and Geomembranes, 8, pp 293-310

    Elias, V., Christopher, B.R., and Berg, R.R., (2001), “Mechanically Stabilized Earth Walls and Reinforced Soil Slopes Design and Construction Guidelines” Report No. FHWA-NHI-00-043, National Highway Institute, Federal Highway Administration, Washington, D.C.

    Gray, D. H. and Ohashi, H. (1983), “Mechanics of Fiber Reinforcement in Sand”, Journal of Geotechnical Engineering, Vol. 109, No. 3, pp 335-353.

    Haeri, S.M., Noorzad, R., and Oskoorouchi, A.M., (2000). “Effect of geotextile reinforcement on the mechanism behavior of sand” Geotextiles and Geomembranes, 18, pp 385-402.

    Janbu, N. (1954), “Stability Analysis of Slopes with Dimensionless Parameters”, Harvard Soil Mechanics Series, No. 46.

    National Concrete Masonry Association, (2010), “Design Manual for Segmental Retaining Walls”, Bathurst, R.J., Editor, 3rd Edition, Herndon, Virginia, USA, 282p.

    Schlosser, F. and Long, N. (1974), “Recent Results in French Research on Reinforced Earth”, J. Const. Div. Proc. ASCE, Vol. 100, No. CO3, 223-237.

    Vidal, H. (1969), “The principle of reinforced earth”, Highway Research Resource, No. 282, pp.1-16.

    Wu, C. S. and Hong, Y. S., (2008). “The Behavior of a Laminated Reinforced Granular Column”, Geotextiles and Geomembranes, 26, pp 302-316.

    Yang, K. S., (2009).“Stress Distribution within Geosynthetic-Reinforced Soil Structures” , Ph.D dissertation, the University of Texas at Austin.

    Zhang, M., Zhou, H., Javadi, A., and Wang. Z. (2008), “Experimental and Theoretical Investigation of Strength of Soil Reinforced with Multi-Layer Horizontal-Vertical Orthogonal Elements”, Geotextiles and Geomembranes, 26, 1–13.

    蔡伊雯,「地工合成物水平加勁砂柱試體之力學行為之探討」,碩士論文,淡江大學土木工程系,淡水(2007)。

    QR CODE