簡易檢索 / 詳目顯示

研究生: Rashid Ahmed Khan
Rashid Ahmed Khan
論文名稱: 新型高增益電力轉換器結合最大功率點追蹤控制器應用於太陽能發電系統
A novel high gain DC-DC boost converter in operation with maximum power point tracker for solar photovoltaic system
指導教授: 林長華
Chang-Hua Lin
劉華棟
Hwa-Dong Liu
口試委員: 林長華
Chang-Hua Lin
劉華棟
Hwa-Dong Liu
白凱仁
Kai-Jun Pai
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 81
外文關鍵詞: non-isolated topology, high gain DC-DC converter, maximum power point tracker (MPPT), voltage gain
相關次數: 點閱:1594下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • In photovoltaic (PV) systems, the high step-up DC-DC converter and maximum power point tracking (MPPT) control are crucial components. To use PV modules to generate power, this manuscript proposed a novel high-gain boost DC-DC converter for solar photovoltaic system operation with a maximum power point tracker. The PV array can supply power to the load via a DC-DC converter, increasing the output voltage. Due to the stochastic nature of solar energy, PV arrays must use the MPPT control approach to function at the maximum power point. The output voltage of the traditional DC-DC converter delivers very low voltage in solar photovoltaic (PV) due to a small voltage gain. As a result, cascaded DC-DC boost converters are required to bring the voltage up to the same level. However, novel high-gain DC-DC boost converters are given. The common ground characteristics and continuous input current of the proposed topology make it more advantageous than the previously proposed non-isolated high gain boost converter. After MATLAB simulation results validation, a 150 W prototype is created in the laboratory to bolster its viability. High gain is achieved at low duty ratios, with an input voltage range from 20 V to 40 V producing an output voltage of 380 V as a result, the efficiency of the converters is 90 - 95 %, and the performance of the converter is deemed satisfactory by experimental and simulation results. In this study, detailed analysis and component design are also formulated and documented. Also, this paper details how the new high-gain boost DC-DC converter topology works with the maximum power point (MPP) tracking using Hill climbing (HC) algorithm.

    Table of Contents Chapter 1 Introduction 1 1.1 Research background 1 1.2 Literature review 4 Chapter 2 Mathematical Modelling of Solar PV Module 8 2.1 Ideal single diode model 9 2.2 Improved two diode model 10 2.3 Simplified Two Diode Model 12 Chapter 3 Maximum power point tracker 16 3.1 PV module characteristic description 16 3.2 MPPT literature review 18 3.3 Connection solar photovoltaic module with Power Electronic Converter 21 3.4 Implementation of hill climbing (HC) algorithm with the proposed converter 22 Chapter 4 Analysis and operation of the conventional DC-DC boost converter and proposed high gain DC-DC boost converter 24 4.1 Structure of the conventional DC-DC boost converter 24 A. Operation of Circuit configuration (mode 1) 26 B. Operation of circuit configuration (mode 2) 27 4.2 Structure of the proposed converter 30 A Operation of Circuit configuration (mode 1: SW turn on) 32 B Operation of Circuit configuration (mode 2: SW turn off) 33 C Inductors size selection 36 D Capacitors size selection 37 Chapter 5 Experimental results and discussion 38 5.1 Simulation results 38 A. MATLAB Simulation of Traditional Boost Converter 38 B. MATLAB Simulation of proposed Converter 42 5.2 Hardware Results 47 5.3 Comparison of ideal voltage gain of the high gain DC-DC boost converter 55 Chapter 6 Conclusions and Future works 58

    [1] Rezaie M, Abbasi V, Kerekes T. High step‐up DC–DC converter composed of quadratic boost converter and switched capacitor. IET Power Electronics. 2020 Dec; 13(17):4008-18.
    [2] He L, Xu X, Chen J, Sun J, Guo D, Zeng T. A plug-play active resonant soft switching for current-auto-balance interleaved high step-up DC/DC converter. IEEE Transactions on Power Electronics. 2018 Oct 26;34(8):7603-16.
    [3] Packnezhad, Mohsen, Hosein Farzanehfard, and Ehsan Adib. "Integrated soft switching cell and clamp circuit for interleaved high‐step‐up converters." IET Power Electronics 12, no. 3 (2019): 430-437.
    [4] Packnezhad M, Farzanehfard H, Adib E. Integrated soft switching cell and clamp circuit for interleaved high‐step‐up converters. IET Power Electronics. 2019 Mar;12(3):430-7.
    [5] Yang J, Yu D, Cheng H, Zan X, Wen H. Dual‐coupled inductors‐based high step‐up DC/DC converter without input electrolytic capacitor for PV application. IET Power Electronics. 2017 May;10(6):646-56.
    [6] Hasanpour S, Siwakoti YP, Mostaan A, Blaabjerg F. New semiquadratic high step-up dc/dc converter for renewable energy applications. IEEE Transactions on Power Electronics. 2020 Jun 2;36(1):433-46.
    [7] He L, Liao Y. An advanced current-autobalance high step-up converter with a multicoupled inductor and voltage multiplier for a renewable power generation system. IEEE Transactions on Power Electronics. 2015 Dec 18;31(10):6992-7005.
    [8] Tseng KC, Cheng CA, Chen CT. High step-up interleaved boost converter for distributed generation using renewable and alternative power sources. IEEE journal of emerging and selected topics in power electronics. 2016 Oct 13;5(2):713-22.
    [9] Tseng KC, Lin JT, Huang CC. High step-up converter with three-winding coupled inductor for fuel cell energy source applications. IEEE Transactions on Power Electronics. 2014 Mar 11;30(2):574-81.
    [10] Tarzamni H, Kurdkandi NV, Gohari HS, Lehtonen M, Husev O, Blaabjerg F. Ultra-High Step-Up DC-DC Converters Based on Center-Tapped Inductors. IEEE Access. 2021 Oct 4;9:136373-83.
    [11] Zaoskoufis K, Tatakis EC. An improved boost-based dc/dc converter with high-voltage step-up ratio for DC microgrids. IEEE Journal of Emerging and Selected Topics in Power Electronics. 2020 Mar 16;9(2):1837-53.
    [12] Guepfrih MF, Waltrich G, Lazzarin TB. High step-up DC-DC converter using built-in transformer voltage multiplier cell and dual boost concepts. IEEE Journal of Emerging and Selected Topics in Power Electronics. 2021 Mar 4;9(6):6700-12.
    [13] Hasanpour S, Siwakoti Y, Blaabjerg F. New Single‐Switch quadratic boost DC/DC converter with Low voltage stress for renewable energy applications. IET Power Electronics. 2020 Dec;13(19):4592-600.
    [14] Ahmad J, Zaid M, Sarwar A, Tariq M, Sarwer Z. A new transformerless quadratic boost converter with high voltage gain. Smart Science. 2020 Jul 2;8(3):163-83.
    [15] Samadian A, Hosseini SH, Sabahi M, Maalandish M. A new coupled inductor nonisolated high step-up quasi Z-source DC–DC converter. IEEE Transactions on Industrial Electronics. 2019 Aug 16;67(7):5389-97.
    [16] Hu X, Liu X, Ma P, Jiang S. An ultrahigh voltage gain hybrid-connected boost converter with ultralow distributed voltage stress. IEEE Transactions on Power Electronics. 2020 Feb 19;35(10):10385-95.
    [17] Kothapalli KR, Ramteke MR, Suryawanshi HM, Reddi NK, Kalahasthi RB. A coupled inductor based high step-up converter for DC microgrid applications. IEEE Transactions on Industrial Electronics. 2020 May 7;68(6):4927-40.
    [18] Ardi H, Ajami A. Study on a high voltage gain SEPIC-based DC–DC converter with continuous input current for sustainable energy applications. IEEE transactions on power electronics. 2018 Feb 28;33(12):10403-9.
    [19] Alavi P, Mohseni P, Babaei E, Marzang V. An ultra-high step-up dc–dc converter with extendable voltage gain and soft-switching capability. IEEE Transactions on Industrial Electronics. 2019 Nov 15;67(11):9238-50.
    [20] Salehi SM, Dehghan SM, Hasanzadeh S. Interleaved-input series-output ultra-high voltage gain DC–DC converter. IEEE Transactions on Power Electronics. 2018 Jul 5;34(4):3397-406.
    [21] Rostami S, Abbasi V, Kerekes T. Switched capacitor based Z‐source DC–DC converter. IET Power Electronics. 2019 Nov; 12(13):3582-9..
    [22] Rezaie M, Abbasi V. Effective combination of quadratic boost converter with voltage multiplier cell to increase voltage gain. IET Power Electronics. 2020 Aug;13(11):2322-33.
    [23] Liu T, Lin M, Ai J. High step-up interleaved dc–dc converter with asymmetric voltage multiplier cell and coupled inductor. IEEE Journal of Emerging and Selected Topics in Power Electronics. 2019 Jul 29;8(4):4209-22.
    [24] Tarzamni H, Sabahi M, Rahimpour S, Lehtonen M, Dehghanian P. Operation and Design Consideration of an Ultrahigh Step-Up DC–DC Converter Featuring High Power Density. IEEE Journal of Emerging and Selected Topics in Power Electronics. 2021 Apr 13;9(5):6113-23.
    [25] Nouri T, Shaneh M, Benbouzid M, Kurdkandi NV. An interleaved ZVS high step-up converter for renewable energy systems Applications. IEEE Transactions on Industrial Electronics. 2021 May 19;69(5):4786-800.
    [26] Mohseni P, Mohammadsalehian S, Islam MR, Muttaqi KM, Sutanto D, Alavi P. Ultrahigh Voltage Gain DC–DC Boost Converter With ZVS Switching Realization and Coupled Inductor Extendable Voltage Multiplier Cell Techniques. IEEE Transactions on Industrial Electronics. 2021 Jan 14;69(1):323-35.
    [27] Blaabjerg F, Ionel DM. Renewable energy devices and systems–state-of-the-art technology, research and development, challenges and future trends. Electric Power Components and Systems. 2015 Jul 21;43(12):1319-28..
    [28] Forouzesh M, Siwakoti YP, Gorji SA, Blaabjerg F, Lehman B. Step-up DC–DC converters: a comprehensive review of voltage-boosting techniques, topologies, and applications. IEEE transactions on power electronics. 2017 Mar 6;32(12):9143-78.
    [29] Torkan A, Ehsani M. A novel nonisolated Z-source DC–DC converter for photovoltaic applications. IEEE transactions on Industry Applications. 2018 May 7;54(5):4574-83.
    [30] Kanamarlapudi VR, Wang B, Kandasamy NK, So PL. A new ZVS full-bridge DC–DC converter for battery charging with reduced losses over full-load range. IEEE Transactions on Industry Applications. 2017 Sep 22;54(1):571-9.
    [31] Jou HL, Huang JJ, Wu JC, Wu KD. Novel isolated multilevel DC–DC power converter. IEEE Transactions on Power Electronics. 2015 Oct 6;31(4):2690-4.
    [32] Forouzesh M, Yari K, Baghramian A, Hasanpour S. Single‐switch high step‐up converter based on coupled inductor and switched capacitor techniques with quasi‐resonant operation. IET Power Electronics. 2017 Feb;10(2):240-50.
    [33] Khan S, Mahmood A, Tariq M, Zaid M, Khan I, Rahman S. Improved dual switch non-isolated high gain boost converter for DC microgrid application. In2021 IEEE Texas Power and Energy Conference (TPEC) 2021 Feb 2 (pp. 1-6). IEEE.
    [34] Zaid M, Ahmad J, Sarwar A, Sarwer Z, Tariq M, Alam A. A Transformerless Quadratic Boost High Gain DC-DC Converter. In2020 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES) 2020 Dec 16 (pp. 1-6). IEEE.
    [35] Ahmad J, Lin CH, Zaid M, Sarwar A, Ahmad S, Sharaf M, Zaindin M, Firdausi M. A new high voltage gain DC to DC converter with low voltage stress for energy storage system application. Electronics. 2020 Dec 4;9(12):2067.
    [36] Kadri R, Gaubert JP, Champenois G, Mostefaï M. Performance analysis of transformless single switch quadratic boost converter for grid connected photovoltaic systems. InThe XIX International Conference on Electrical Machines-ICEM 2010 2010 Sep 6 (pp. 1-7). IEEE.
    [37] Chub A, Vinnikov D, Liivik E, Jalakas T. Multiphase quasi-Z-source DC–DC converters for residential distributed generation systems. IEEE Transactions on Industrial Electronics. 2018 Feb 5;65(10):8361-71.
    [38] Meraj M, Bhaskar MS, Iqbal A, Al-Emadi N, Rahman S. Interleaved multilevel boost converter with minimal voltage multiplier components for high-voltage step-up applications. IEEE Transactions on Power Electronics. 2020 May 5;35(12):12816-33.
    [39] Abdel‐Rahim O, Funato H, Haruna J. A comprehensive study of three high‐gain DC‐DC topologies based on Cockcroft‐Walton voltage multiplier for reduced power PV applications. IEEJ Transactions on Electrical and Electronic Engineering. 2018 Apr;13(4):642-51.
    [40] Maroti PK, Padmanaban S, Holm-Nielsen JB, Bhaskar MS, Meraj M, Iqbal A. A new structure of high voltage gain SEPIC converter for renewable energy applications. IEEE Access. 2019 Jun 28;7:89857-68.
    [41] Banaei MR, Sani SG. Analysis and implementation of a new SEPIC-based single-switch buck–boost DC–DC converter with continuous input current. IEEE transactions on power electronics. 2018 Jan 30;33(12):10317-25.
    [42] Alizadeh Pahlavani MR, Shokati Asl E. DC–DC SIDO converter with low‐voltage stress on switches: analysis of operating modes and design considerations. IET Power Electronics. 2020 Feb;13(2):233-47.
    [43] Farhadi‐Kangarlu M, Moallemi Khiavi A, Neyshabouri Y. A non‐isolated single‐input dual‐output boost DC–DC converter. IET Power Electronics. 2021 Apr;14(5):936-45.
    [44] Khan S, Zaid M, Mahmood A, Ahmad J, Alam A. A single switch high gain DC-DC converter with reduced voltage stress. In2020 IEEE 7th Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON) 2020 Nov 27 (pp. 1-6). IEEE.
    [45] Khan S, Mahmood A, Zaid M, Tariq M, Lin CH, Ahmad J, Alamri B, Alahmadi A. A high step-up dc-dc converter based on the voltage lift technique for renewable energy applications. Sustainability. 2021 Oct 7;13(19):11059.
    [46] Andrade AM, Faistel TM, Guisso RA, Toebe A. Hybrid high voltage gain transformerless DC–DC converter. IEEE Transactions on Industrial Electronics. 2021 Mar 23;69(3):2470-9.
    [47] Zaid M, Khan S, Siddique MD, Sarwar A, Ahmad J, Sarwer Z, Iqbal A. A transformerless high gain dc–dc boost converter with reduced voltage stress. International Transactions on Electrical Energy Systems. 2021 May;31(5):e12877.
    [48] Syrigos SP, Christidis GC, Mouselinos TP, Tatakis EC. A non‐isolated DC‐DC converter with low voltage stress and high step‐down voltage conversion ratio. IET Power Electronics. 2021 May;14(6):1219-35.
    [49] Shanthi T, Prabha SU, Sundaramoorthy K. Non-isolated n-stage high step-up DC-DC converter for low voltage DC source integration. IEEE Transactions on Energy Conversion. 2021 Jan 8;36(3):1625-34.
    [50] Bhaskar MS, Gupta N, Selvam S, Almakhles DJ, Sanjeevikumar P, Ali JS, Umashankar S. A new hybrid zeta-boost converter with active quad switched inductor for high voltage gain. IEEE Access. 2021 Jan 25;9:20022-34.
    [51] Sadaf S, Al-Emadi N, Maroti PK, Iqbal A. A new high gain active switched network-based boost converter for DC microgrid application. IEEE Access. 2021 May 3;9:68253-65. [52] Zhao J, Chen D. Switched-capacitor high voltage gain Z-source converter with common ground and reduced passive component. IEEE Access. 2021 Jan 27;9:21395-407.
    [53Bao D, Kumar A, Pan X, Xiong X, Beig AR, Singh SK. Switched inductor double switch high gain DC-DC converter for renewable applications. IEEE Access. 2021 Jan 13;9:14259-70.
    [54] Babaei E, Jalilzadeh T, Sabahi M, Maalandish M, Alishah RS. High step‐up DC‐DC converter with reduced voltage stress on devices. International Transactions on Electrical Energy Systems. 2019 Apr;29(4):e2789.
    [55] Kwon JM, Kwon BH, Nam KH. High-efficiency module-integrated photovoltaic power conditioning system. IET Power Electronics. 2009 Jul 1;2(4):410-20.
    [56] Li W, Li W, Ma M, Deng Y, He X. A non-isolated high step-up converter with built-in transformer derived from its isolated counterpart. InIECON 2010-36th Annual Conference on IEEE Industrial Electronics Society 2010 Nov 7 (pp. 3173-3178). IEEE.
    [57] Cha WJ, Cho YW, Kwon JM, Kwon BH. Highly efficient microinverter with soft-switching step-up converter and single-switch-modulation inverter. IEEE Transactions on industrial electronics. 2014 Nov 3;62(6):3516-23.
    [58] Gu B, Dominic J, Chen B, Zhang L, Lai JS. Hybrid transformer ZVS/ZCS DC–DC converter with optimized magnetics and improved power devices utilization for photovoltaic module applications. IEEE Transactions on Power Electronics. 2014 Jun 6;30(4):2127-36.
    [59] Chen SM, Liang TJ, Yang LS, Chen JF. A cascaded high step-up DC–DC converter with single switch for microsource applications. IEEE transactions on power electronics. 2010 Nov 1;26(4):1146-53..
    [60] Barreto LH, Coelho EA, Farias VJ, de Oliveira JC, de Freitas LC, Vieira JJ. A quasi-resonant quadratic boost converter using a single resonant network. IEEE Transactions on Industrial Electronics. 2005 Apr 4;52(2):552-7.
    [61] Maksimovic, Dragan, and Slobodan Cuk. "Switching converters with wide DC conversion range." IEEE Transactions on Power Electronics 6, no. 1 (1991): 151-157.
    [62] Saadat, P., Abbaszadeh, K.: ‘A single-switch high step-Up DC-DC converter based on quadratic boost’, IEEE Trans. Ind. Electron., 2016, 63, (12), pp.7733–7742
    [63] Vighetti S, Ferrieux JP, Lembeye Y. Optimization and design of a cascaded DC/DC converter devoted to grid-connected photovoltaic systems. IEEE Transactions on Power Electronics. 2011 Sep 5;27(4):2018-27.
    [64] Ye YM, Eric Cheng KW. Quadratic boost converter with low buffer capacitor stress. IET Power Electronics. 2014 May;7(5):1162-70.
    [65] Silveira GC, Tofoli FL, Bezerra LD, Torrico-Bascopé RP. A nonisolated DC–DC boost converter with high voltage gain and balanced output voltage. IEEE Transactions on Industrial Electronics. 2014 Apr 14;61(12):6739-46.
    [66] Zhang N, Sutanto D, Muttaqi KM, Zhang B, Qiu D. High‐voltage‐gain quadratic boost converter with voltage multiplier. IET Power Electronics. 2015 Dec;8(12):2511-9.
    [67] Mahmoud Y, Xiao W, Zeineldin HH. A simple approach to modeling and simulation of photovoltaic modules. IEEE transactions on Sustainable Energy. 2011 Dec 15;3(1):185-6.
    [68] Zhang, Jianpo, Tao Wang, and Huijuan Ran. "A maximum power point tracking algorithm based on gradient descent method." In 2009 IEEE Power & Energy Society General Meeting, pp. 1-5. IEEE, 2009.
    [69] Khan AI, Khan RA, Farooqui SA, Sarfraz M. Artificial Neural Network-Based Maximum Power Point Tracking Method with the Improved Effectiveness of Standalone Photovoltaic System. In AI and Machine Learning Paradigms for Health Monitoring System 2021 (pp. 459-470). Springer, Singapore.
    [70] Farooqui SA, Shees MM, Alsharekh MF, Alyahya S, Khan RA, Sarwar A, Islam M, Khan S. Crystal Structure Algorithm (CryStAl) Based Selective Harmonic Elimination Modulation in a Cascaded H-Bridge Multilevel Inverter. Electronics. 2021 Dec 9;10(24):3070.
    [71] Khan RA, Sabir B, Sarwar A, Liu HD, Lin CH. Reptile Search Algorithm (RSA)-Based Selective Harmonic Elimination Technique in Packed E-Cell (PEC-9) Inverter. Processes. 2022 Aug 16;10(8):1615.
    [72] Khan RA, Farooqui SA, Sarwar MI, Ahmad S, Tariq M, Sarwar A, Zaid M, Ahmad S, Shah Noor Mohamed A. Archimedes Optimization Algorithm Based Selective Harmonic Elimination in a Cascaded H-Bridge Multilevel Inverter. Sustainability. 2021 Dec 28;14(1):310.
    [73] Farooqui SA, Khan RA, Islam N, Ahmed N. Cuckoo Search Algorithm and Artificial Neural Network-based MPPT: A Comparative Analysis. In2021 IEEE 8th Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON) 2021 Nov 11 (pp. 1-5). IEEE.
    [74] Islam N, Nat A, Khan RA. Recent Technological Advances in Solar Photovoltaic System and Its Applications in Building Integrated Photovoltaic System. Sustainable Technology and Advanced Computing in Electrical Engineering. 2022:625-36.

    QR CODE